
w90pov manual

Daniel Åberg
(Dated: May 1, 2013)

This document briefly describes how to use the ray-tracing software POV-Ray to render isosurfaces from xsf files
generated by the program package wannier90. It is assumed that POV-Ray is already installed. Specifically, to be able
to render smooth isosurfaces using tri-linear interpolation, the POV-Ray version number needs to be larger than 3.6
(currently it’s in v3.7 RC5, binaries and sources are available at http://www.povray.org/beta).

A working knowledge of POV-Ray is of course nice, but is no prerequisite. The interested reader is referred to
the POV-Ray official site http://www.povray.org/ and Friedrich Lohmueller’s tutorial on anaylical geometry, http:
//www.f-lohmueller.de/pov_tut/a_geo/a_geo__e.htm. Comments and/or bugs can be sent to aberg2@llnl.gov.

Compilation

Modify Makefile according to your installation and then type ‘make’.

Usage

It is recommended to create a separate directory and copy/move/link the already produced xsf files to that directory.
Edit the input file w90pov.inp (to be described in the next section) and then run w90pov:

$> w90pov w90pov.inp

This will produce four text files as well as a number of df3 files. The latter are binary files containing the Wannier
function data in a format suitable for POV-Ray. The text files contain all other information about the atomic structure
and isosurfaces.

• <seedname>.pov
This is the main scene file and only tells POV-Ray which other files to include.

• mydefs.inc
Contains information on camera, light, where to aim the camera, cell metric, as well as macros to render atoms,
bonds, and isosurfaces.

• densities.inc
Contains definitions of the df3 files and the corresponding cell metric.

• unitcell.inc
Contains information on atomic positions, bonds, and colors.

• blobs.inc
Contains information which isosurface at what isolevel to render (as well as isosurface color)

Feel free to experiment with the settings in these files, specifically the camera position, zoom, where to aim the
camera, and which atoms to include. Examples can be found in the examples directory.

To render the scene then enter:

$> povray <seedname>.pov +H{height} +W{width} +A0.14

Of course replace <seedname> with the seedname from the wannier90 calculation, and {height} and {width}
with the desired size of your picture. The “+A” option enables anti-aliasing. In addition, the output format can be
controlled using “+F”x, where x can take, for example, the values C (compressed Targa-24), N (PNG), P (PPM), or
T (uncompressed Targa-24). The output file name can be set using “+O<outfile>”. Please refer to the POV-Ray
documentation for further details.

http://www.povray.org/beta
http://www.povray.org/
http://www.f-lohmueller.de/pov_tut/a_geo/a_geo__e.htm
http://www.f-lohmueller.de/pov_tut/a_geo/a_geo__e.htm

2

The w90pov.inp file

• numwan - integer;
Number of Wannier functions to render.

• seedname - character string;
The root name of wannier90 files.

• wanlist - integer array;
List of xsf files to read, of length numwan.

• isolevel - real array;
List of isolevels to render, of length numwan. The allowed range (MAX,MIN) for a given function is shown during
the run.

• isopm - real array;
List of how to render each function, of length numwan.
-1 = negative values;
0 = don’t render this function;
1 = positive values;
2 = positive and negative values.

• wancol - real array;
List of colors in rgb format to use for isosurfaces, of length 3×numwan. The values, three for each color, are
assumed to range from 0-1.

• trans - real array;
List of degree of transparency for each surface, of length numwan.
0 = opaque;
1 = transparent.

• camera - character string;
Camera position. There are six choices, valid entries are x, y, z, a1, a2, and a3. In each case, the camera is
positioned along the corresponding vector. By default, the camera looks at the center of the cell (see lookpos).

• lookat - real array, optional; default: center of unit cell;
Position where camera is aimed in Cartesian coordinates; length 3.

• bondcut - real number, optional; default: 0.9;
Bond cut-off prefactor. Bonds are “drawn” if the distance between two atoms are less then the sum of their
covalent radii × bondcut. If bondcut is negative then a bond is drawn if the distance between two atoms is
smaller than the absolute value of this number.

• bondrad - real number, optional; default: 0.2;
Bond-radius prefactor. The radius of the bond is set to min(radius(atom1),radius(atom2)) × bondrad.

• radialfactor - real number, optional; default: 0.5;
Atomic radius prefactor. Atoms are rendered with the covalent radius × radialfactor. The covalent radii are
taken from http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4#group and can be found in the
the subroutine write unitcell of driver.f90.

• interpolation - integer number, optional; default: 2
Determines the degree of interpolation of isosurface. Use 2 for production and, e.g., 1 to test the orientation of
the camera.

• zoom - real number;
Zoom factor. Here you have to play around. It’s recommended to set isopm to an array of zeros or set
interpolation to zero when finding to the best position and zoom.

• cellim - real array, optional; default: 0 1 0 1 0 1;
Defines a “box” in which atoms are rendered. The format is
<a1 min> <a1 max> <a2 min> <a2 max> <a3 min> <a3 max>
and is given in units of the Bravais lattice vectors. Thus, the default values correspond to the atoms inside the
unit cell. Note that the code accepts non-integer numbers.

http://www.ccdc.cam.ac.uk/products/csd/radii/table.php4#group

3

• cutsphere - real number, optional; no default;
Any atom that is located outside a sphere, centered at lookat, having radius cutsphere will not be rendered.

• lcage - logical, optional; default: true;
Render the unit cell.

• aspectratio - real number, optional; default: 1.0;
Specifies the aspect ratio between image width and height. Be sure to use the same ratio in the actual call to
povray (e.g. +H{x} +W{x×aspectratio})

Examples

A number of examples can be found in the examples directory. Be sure to first gunzip any *.gz files.

1. examples/1.PdN2 1
Rendering of four d-orbitals centered at Pd atoms in PdN2, see Fig. 1.

2. examples/2.PdN2 2
Magnification of one of Pd d-orbitals, see Fig. 2. Here I’ve used lookpos and cutsphere. You will need to
copy across pdn2 00004.xsf from example 1. Note that aspectratio is set to 2.0, so make sure to specify the
correct ratio between the width and height when rendering (“+H{x} +W{2x}”).

3. examples/3.PdN2 3
Same orbital as in the last example (i.e., you will need to copy across pdn2 00004.xsf from example 1), but
with several transparent isosurfaces (see Fig. 3). This was generated using the example input file, and manually
editing the file blobs.inc. So, to create multiple isosurfaces, find a line with elblob, copy this as many
times you wish, and edit the first and last number in each line. These numbers correspond to the isolevel and
transparency, respectively. To render this figure, first run w90pov, copy blobs.inc more to blobs.inc, and run
povray.

4. examples/4.LaBr3 1
Bromine p-orbital in LaBr3, see Fig. 4.

5. examples/5.LaBr3 2
Lanthanum f -orbital in LaBr3, see left panel in Fig. 5.

6. examples/6.LaBr3 3
Lanthanum f -orbital in LaBr3, see right panel in Fig. 5. This represents a manual “tweak” of example 5. You
will need to copy across the two df3 files generated in example 5. In the file mydefs.inc you’ll find a new
isosurface-macro (elblob2) that turns the “blob” into glass. Also, the camera-type has been changed into
perspective (instead of orthographic), a plane and sky have been added, and finally the scene is rendered using
photons (that is, realistic reflection/refraction).

4

FIG. 1. Four d-orbitals in PdN2.

FIG. 2. One of the d-orbitals in PdN2.

FIG. 3. One of the d-orbitals in PdN2 with several transparent isosurfaces.

5

FIG. 4. Bromine p-orbital in LaBr3.

FIG. 5. Lanthanum f -orbital in LaBr3.

	 w90pov manual
	Compilation
	Usage
	The w90pov.inp file
	Examples

