Z2Pack
TMS 2016 Hands-on session D. Gresch

Exercise 1. Chirality of an isotropic Weyl node
An isotropic Weyl node is described locally by the Hamiltonian
’H(k) = Z k‘iO’i, (1)
ie{z,y,z}

where o; are the Pauli matrices. Depending on its chirality, the Weyl node is either a source or
sink of Berry curvature. Consequently, the chirality can be calculated by evaluating the Chern
number on a sphere surrounding the Weyl node.

The following skeleton code (ex1/weyl_skeleton.py) contains a function which represents the
Hamiltonian from eq. (1).

(a) Create a z2pack.hm.System instance which represents this system.

(b) Run a calculation for a surface enclosing the Weyl point - which is located at k = (0,0, 0)
- by a sphere of radius 0.1.

Hint: Try finding the documentation for the z2pack.shape submodule in the Z2Pack
reference.

(c) What is the Chern number associated with this surface?

(d) Create a plot which demonstrates the result of your calculation.

Listing 1: Skeleton code containing the function Hamilton (k)

#!/usr/bin/env python
# —-*- coding: utf-8 -x-

import numpy as np

# defining pauli matrices

identity = np.identity(2, dtype=complex)

pauli_x = np.array([[0, 1], [1, 0]], dtype=complex)
pauli_y = np.array([[0, -1j], [1j, 0]], dtype=complex)
np.array([[1, 0], [0, -1]]1, dtype=complex)

pauli_z

# defining the Weyl Hamiltonian
def Hamilton(k):
kx, ky, kz = k
return kx * pauli_x + ky * pauli_y + kz * pauli_z




Exercise 2. Zs invariant in a tight-binding model

We consider a two-dimensional system which consists of two inter-penetrating square lattices (see
fig. 1). Each lattice point hosts two orbitals, which have on-site energy +1 for one sub-lattice,
and —1 for the other. We consider two kinds of hopping:

e Nearest-neighbour hopping with strength ¢;, between the first / second orbital in one
sub-lattice and the same orbital in the other sub-lattice. Depending on the direction, the
hoppings acquire a phase factor.

e Next-nearest neighbour hopping with strength +t¢5. The hopping is positive for the sub-

lattice with positive on-site energy, and negative for the other one.

In this exercise, the code for creating such a tight-binding model with tbmodels is given. We
study the Zs invariant for the system (in the k, = 0 plane).
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Figure 1: Sketch of a model with two square sublattices. The arrows indicate nearest-neighbour
(red) and next-nearest-neighbour (blue) interaction.

(a) Implement the run function such that it prints the Zy invariant of the k, = 0 plane for
given parameters t1,t2. Evaluate this function for (¢1,t2) = (0.1,0.2) and (0.2,0.3).

Hint: Remember that Wannier charge centers should be calculated only on half the Bril-

louin zone to calculate the Zsy invariant.

(b) Expand the function such that it also creates a plot showing the Wannier charge centers
and their largest gaps.

Listing 2: Skeleton code, containing a function which returns the tight-binding model for given
hopping strengths t1, to.

#!/usr/bin/env python
# -*- coding: utf-8 -x-



import itertools
import tbmodels
def get_model(tl, t2):

model = tbmodels.Model (
on_site=(1, 1, -1, -1),

pos=I[
(0., 0., 0.1,
(0., 0., 0.1,
[0.5, 0.5, 0.1,
[0.5, 0.5, 0.]

1,

occ=2

for p, R in zip([1, 1j, -1j, -1], itertools.product(

(o, -11, f[o, -1]1, [o0]

)):

model.add_hop (
overlap=p * t1,
orbital_1=0,
orbital_2=2,
R=R

)

model .add_hop(
overlap=p.conjugate() * ti1,
orbital_1=1,
orbital_2=3,
R=R

for R in ((r[0], r[1], 0) for r in itertools.permutations(
[0, 1]
)
model.add_hop(t2, 0, 0, R)
model.add_hop(t2, 1, 1, R)
model.add_hop(-t2, 2, 2, R)
model.add_hop(-t2, 3, 3, R)
return model

def run(tl, t2):
# Task a: print the Z2 invariant for the kz=0 plane

# Task b: create a plot showing WCC and the largest gap

if name == main 7

# Call the run function here




Exercise 3. Haldane model

The Haldane model has a honeycomb lattice with two sublattices (see fig. 2) which have on-
site energy +M and —M, respectively. The model contains nearest-neighbour (inter-sublattice)
hoppings with a hopping strength ¢; and next-nearest-neighbour hoppings with strength t,.
The hopping terms acquire a phase due to a microscopic magnetic field, whose strength is
parametrized by a variable ¢. In this exercise, the Hamiltonian for the Haldane model is given,
and we investigate the Chern number for different values of the parameters M, t1,to, ¢.

Figure 2: A honeycomb lattice with two sublattices. The arrows indicate nearest-neighbour
(red) and next-nearest-neighbour (blue) hoppings.

(a)

Implement the get_chern function, which should return the Chern number of the Haldane
model for a given set of parameters M, tq,t2,¢. Using this function, evaluate the Chern
number for M = 0.5,t; = 1,9 = 1/3, and ¢ = £7/2.

Note: The purpose of **settings in the signature of get_chern is to allow passing
keyword arguments to the z2pack.surface.run function. To do this, add **settings as
the last argument: z2pack.surface.run(..., **settings). Keyword arguments passed
to get_chern will then be forwarded to z2pack.surface.run.

Change M to 1.7 and evaluate the two Chern numbers again. Change min neighbour_dist
such that all convergence tests pass.

(optional - for advanced Python users)

Create a plot which shows the phase of the Haldane model as a function of M and ¢ for
M e€[-2,2],¢ € [-m, 7], and t; = 1,t2 = 1/3.

For certain values of the parameters it is much harder (or even impossible) to reach con-
vergence. Can you find an explanation for this behaviour?

Hint: Create a 2D array containing the values for the Chern number for different values
of M and ¢, and use matplotlib’s imshow function to plot it.

Listing 3: Skeleton code containing the function for the Hamiltonian in the Haldane model.

#!/usr/bin/env python

#

-x- coding: utf-8 -x*-



import numpy as np

# defining pauli matrices

identity = np.identity(2, dtype=complex)

pauli_x = np.array([[0, 1], [1, 0]], dtype=complex)
pauli_y = np.array([[0, -1j], [1j, 0]], dtype=complex)
pauli_z np.array([[1, 0], [0, -1]], dtype=complex)

def Hamilton(k, m, tl, t2, phi):
kx, ky, _ =k
k_a = 2 * np.pi / 3. * np.array ([
kx + ky,
-2. *x kx + ky,
kx - 2. * ky
D)
k_b = 2 * np.pi * np.array([-kx + ky, -ky, kx])
H =2 % t2 * np.cos(phi) * sum(np.cos(k_b)) * identity
H += t1 * sum(np.cos(k_a)) * pauli_x
H += t1 * sum(np.sin(k_a)) * pauli_y
H += m * pauli_z
H -= 2 % t2 x np.sin(phi) * sum(np.sin(k_b)) * pauli_z
return H

def get_chern(m, tl, t2, phi, **settings):
# This function should return the Chern number for the given
# parameters m, tl, t2, phi. The **settings should be passed
# on to the z2pack.surface.run method.

if __name__ == "__main__":
# Task a)
# Task b)
# Task c) (optional - for advanced Python users)




Exercise 4. Tight-binding model for MoTe,

The file ex4/data/wannier90_hr.dat contains a tight-binding model for MoTe,; that has 56
occupied bands. In this exercise, we study the topological properties of this model.

Note: The result files from this exercise are quite large (~ 500 MB in total). Make sure to delete
them later if you have limited disk space.

(a)

(b)

Calculate the Zy invariant for the k, = 0 plane and plot your result. Make sure that the
result is saved to a file while the calculation is running.

MoTey has a very small band gap in the &y, = 0 plane. Do you still trust your result? Try
using more than 200 lines in the initial calculation. Adjust the min neighbour_dist and
iterator keyword arguments as needed.

Note: To speed up the calculation, you can change the code such that the previous result is
loaded manually and passed to z2pack.surface.run as init_result, and disable saving
during the run. Make sure to save the result after the calculation.

Calculate the Zg invariant for the k, = 0 plane. Try adjusting the min neighbour_dist
and iterator keyword arguments. What could be the reason that you cannot reach
convergence?

(optional - for advanced Python users)
Find a point where the direct band gap vanishes, and show that it is a Weyl point.

Hint: You can use the tbmodels.Model.eigenval method to calculate the band gap, and
scipy.optimize.minimize to find the minimum of the gap. Use k = (0.9,0.05,0) as a
starting point for the minimization. You might have to try different radii of the sphere
to get a non-zero Chern number because the minimum might not be the exact location of
the Weyl node.


http://z2pack.ethz.ch/tbmodels/reference.html#tbmodels.Model.eigenval

