Calculating topological invariants with Z2Pack Dominik Gresch and Alexey Soluyanov **Abstract** The topological phase of non-interacting electronic bandstructure can be classified by calculating integer invariants. In this chapter, we introduce the Chern invariant that classifies 2D materials in the absence of symmetry. We then show that this invariant can be used as the building block for the classification of topological insulators, semimetals and symmetry-protected topological phases. We show how this classification is performed in practice by introducing Z2Pack, a tool which allows calculating topological invariants from $\mathbf{k} \cdot \mathbf{p}$ and tight-binding models, as well as first-principles calculations. ## 1 The Chern number In this section, we give a coarse introduction to topological invariants in the context of classifying crystalline solids. In the interest of brevity, we will skip many of the mathematical details, instead focusing on conveying an intuitive understanding as required to follow the rest of this chapter. For a more thorough description of the topics covered here, the reader is referred to references [19, 4]. Dominik Gresch ETH Zurich, Institut für Theoretische Physik, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland e-mail: greschd@phys.ethz.ch Alexey Soluyanov ETH Zurich, Institut für Theoretische Physik, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland e-mail: soluyanov@phys.ethz.ch ## 1.1 Topology in non-interacting materials In this first section, we will introduce the notion of topological properties in the context of non-interacting materials. From their basic definition, we will see that topological phases must exhibit some interesting physical phenomena. ## 1.1.1 A short reminder on band theory We will start with a short reminder about band theory. A more thorough description of the subject can be found in any solid-state physics textbook. In the non-interacting limit, electronic states in crystalline materials can be described by a single-particle Hamiltonian $H(\mathbf{k})$, which is a smooth function of the crystal wave-vector \mathbf{k} . The possible electronic states are given by the solutions of the time-independent Schrödinger equation $$H(\mathbf{k})|\psi_{n,\mathbf{k}}\rangle = \varepsilon_{n,\mathbf{k}}|\psi_{n,\mathbf{k}}\rangle.$$ (1) These so-called *Bloch states* $|\psi_{n,\mathbf{k}}\rangle$ are a superposition of plane waves with wavevector \mathbf{k} . As such, they can be written as $$|\psi_{n,\mathbf{k}}\rangle = e^{i\mathbf{k}\cdot\mathbf{r}}|u_{n,\mathbf{k}}\rangle,$$ (2) where $|u_{n,k}\rangle$ is cell-periodic. This property is known as the Bloch theorem [5]. The energy eigenvalues $\varepsilon_{n,k}$ are called *energy bands*, with *n* being their band index. The bulk properties of materials are determined largely by their band structure. For example, a material is insulating if there is an energy gap between the eigenstates which are occupied by electrons, and those that are empty, as shown in Figure 1(a). Conversely, a material is conducting if there is no such energy gap, such as when an energy band is only occupied for certain values of \mathbf{k} . It turns out however that characterizing materials by their bandstructure does not fully capture their physical properties. Instead, taking into account the shape of the Bloch states $|\psi_{n,\mathbf{k}}\rangle$ leads to a topological classification of materials. #### 1.1.2 Topological properties To motivate the concept of topological classification, we first show an example from its mathematical origins in geometry: Closed, orientable two-dimensional surfaces can be classified by their number of holes, called *genus*. A sphere for example has no holes, while a torus has exactly one (see Fig. 2). This property is conserved under smooth deformations of the surface. The only way to add or remove a hole is by tearing and gluing the surface. The genus is an example for a topological invariant – a quantized property that cannot be changed without changing the topological phase. **Fig. 1** (a) Bandstructure of an insulating material. Occupied (blue) and unoccupied (orange) states are separated by an energy gap for all **k**. (b) Bandstructure of a conducting material. Occupied and unoccupied states touch, and some bands are partially occupied. For this reason, topological invariants are commonly used to *identify* topological phases. Fig. 2 Examples of closed orientable surfaces: (a) A sphere has no holes (b) A torus has one hole In order to define topological phases for materials, we need a geometric object on which the topological properties can be defined. For this purpose, we pick a set of bands B. A very common choice for B is to pick the occupied subspace¹. The set of states $\{|u_{n,\mathbf{k}}\rangle\}_{n\in B}$ span a vector space $V_{\mathbf{k}}$ (over $\mathbb C$) for each \mathbf{k} . If $V_{\mathbf{k}}$ is a smooth function of \mathbf{k} and the space where \mathbf{k} itself is defined is a manifold, this defines a so-called fiber bundle. A simple geometrical example of a fiber bundle is given by a one-dimensional vector space defined on a circle. If the vector space is orthogonal to the plane de- ¹ This is not always possible, for example in the case of semimetals where the occupation number changes with \mathbf{k} . In these cases, one often picks the N lowest energy bands instead. scribed by the circle, the resulting object is a cylinder, as shown in Figure 3 (a). If however the basis vector rotates by π as it goes around the circle, the resulting object is a Möbius strip. These two objects cannot be smoothly transformed into each other, making them topologically distinct. **Fig. 3** (a) A cylinder, spanned by a vector which does not rotate as it goes around a circle. (b) A Möbius strip, spanned by a vector which rotates by π as it goes around a circle. #### 1.1.3 Bulk-edge correspondence In the previous section, the fact that the vector space $V_{\mathbf{k}}$ needs to be a smooth function of \mathbf{k} was mentioned. This has a profound impact on the physical properties of topological states, as we shall now see. Even though the Hamiltonian $H(\mathbf{k})$ is a smooth function of \mathbf{k} , the same is not necessarily true for $V_{\mathbf{k}}$. Consider the following one-dimensional example: $$H(k) = -\cos(k)|a\rangle\langle a| + \cos(k)|b\rangle\langle b|, \tag{3}$$ where $|a\rangle$ and $|b\rangle$ are two arbitrary orthogonal states. For k=0, the energy eigenvalues of $|a\rangle$ and $|b\rangle$ are -1 and 1, respectively. Consequently, $|a\rangle$ has band index 1 while $|b\rangle$ has index 2. As k changes, the energy eigenvalues shift until they are equal at $k=\pi/2$. At this point, the vector space $V_{\bf k}={\rm span}\left(\{|u_{n,{\bf k}}\rangle\}_{n\in\{1\}}\right)$ switches discretely from being spanned by $|a\rangle$ to being spanned by $|b\rangle$. As a result, this space does not meet the criteria for topological categorization. The smoothness of the vector space $V_{\mathbf{k}}$ can be broken if the order of energy eigenvalues between the states which are in the set B and those which are not changes. This can easily be avoided if we restrict our possible choice of bands B, such that they are always separated from the other bands by a direct energy gap. In other words, topological properties are defined for *isolated* sets of bands, which form smooth fiber bundles. Another way to frame this is by looking at the possible transformations that can be done to a material without changing its topological properties. In addition to requiring that these transformations smoothly change the Hamiltonian, we impose that the band gap remains open. This definition leads to a remarkable physical property of topological phases: At the boundaries of topologically non-trivial insulating materials, stable conducting edge states must form. In going from the bulk of the topological material to vacuum, the system undergoes a smooth transition from a non-trivial to a trivial (vacuum) state. To allow for this, the aforementioned condition that the bands are separated in energy must be broken. This effect is known as the bulk-boundary correspondence, and variations of this effect govern the interesting transport phenomena to be found in many topological materials [10, 13, 12]. ## 1.2 Defining the Chern number In the previous section, we have seen how topological properties in crystalline materials are defined on a conceptual level. Now, we will show an example for a topological invariant, which can be used to classify many topological phases in matter. ## 1.2.1 The Berry phase and Chern invariant The basis for defining a topological invariant for electronic bands is the notion of a *geometric phase*. To illustrate this phase, imagine a closed loop C on a manifold. As an example, we choose a closed loop on a sphere, as shown in Figure 4(a). Adding the plane tangential to the sphere at each point gives us a fiber bundle (see Fig. 4(b)). Fig. 4 (a) A closed path C on the surface of a sphere. (b) The tangential vector space $V_{\mathbf{k}}$ for a given point \mathbf{k} on a sphere. Now we choose a vector in the tangential space, and move it along C in such a way that it remains locally parallel to itself, as shown in Figure 5. This process is called *parallel transport*. We observe that the vector is rotated by some angle ϕ as it traverses the path C. Since this angle depends only on the geometry of the fiber bundle, it is called a geometric phase. **Fig. 5** Parallel transport of a vector on a closed path on a sphere rotates the vector by an angle ϕ . For electronic bands, such a phase, known as Berry's phase², can be written as [34] $$\gamma_C = i \oint_C \sum_{n \in B} \langle u_{n,\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n,\mathbf{k}} \rangle . d\mathbf{k}, \tag{4}$$ where C is a closed loop in reciprocal space. Unlike the example above, the
Berry's phase represents a rotation in the complex phase of a vector, not its real-space direction.³ It is Gauge-invariant up to multiples of 2π [34]. By defining the Berry potential $$\mathscr{A}(\mathbf{k}) = i \sum_{n \in B} \langle u_{n,\mathbf{k}} | \nabla_{\mathbf{k}} | u_{n,\mathbf{k}} \rangle, \qquad (5)$$ the Berry phase can be re-written as $$\gamma_C = \oint_C \mathscr{A}(\mathbf{k}).d\mathbf{k}. \tag{6}$$ Note that unlike the Berry phase, the Berry potential is not a Gauge-invariant quantity. If the Berry potential is a smooth function of \mathbf{k} (an important prerequisite, as we shall see soon), we can use Stokes' theorem to rewrite the Berry phase as a surface integral $$\gamma_C = \int_{S} \nabla_{\mathbf{k}} \wedge \mathscr{A}(\mathbf{k}) . d\mathbf{k}, \tag{7}$$ where $C = \partial S$. Introducing the *Berry connection* $$\mathscr{F} = \nabla_{\mathbf{k}} \wedge \mathscr{A}(\mathbf{k}),\tag{8}$$ which is again Gauge-invariant, we can write this as ² For simplicity, we consider the *total* Berry phase of all bands. The Berry phase can also be defined for a single band, in which case the sum over bands is dropped. ³ To see this, try calculating the Berry phase for $|u_k\rangle = e^{ik/2} \begin{pmatrix} \cos(k) \\ \sin(k) \end{pmatrix}$, for $k \in [0, 2\pi]$. $$\gamma_C = \int_{\mathcal{S}} \mathscr{F}(\mathbf{k}) . d\mathbf{S}. \tag{9}$$ For a closed, orientable two-dimensional surface S in reciprocal space, we can now define the Chern invariant as [6, 30] $$C = \frac{1}{2\pi} \int_{S} \mathscr{F}(\mathbf{k}) . d\mathbf{S}. \tag{10}$$ Since the edge of a closed surface is a trivial path, equation 6 seems to suggest that the Chern number is always zero. However, we must now remember that equations 7 and 9 are valid only if the Berry potential $\mathscr{A}(\mathbf{k})$ is smooth. Previously, we discussed that $V_{\mathbf{k}}$ spanned by $|u_{n,\mathbf{k}}\rangle$ must be a smooth function of \mathbf{k} if we wish to define a topological classification. However, there can still be a winding in the phase of $|u_{n,\mathbf{k}}\rangle$ which makes the Berry potential non-smooth. As a result, the Chern number can take any integer value. In fact, the presence of a non-zero Chern number can be viewed as a topological obstruction to finding a globally smooth Gauge [29, 28]. ### 1.2.2 The Chern number as change in Berry phase Having defined the Chern number in terms of the cell-periodic states $|u_{n,\mathbf{k}}\rangle$, we will now show an alternative form that is easier to calculate numerically and is used within the Z2Pack code [9]. For simplicity, we will look at the example where S is the Brillouin zone $\mathbf{k} \in [0,1)^2$ of a two-dimensional material, in reduced coordinates. The results are equally applicable to other closed two-dimensional surfaces. We divide the surface integral (eq. 10) for the Chern number into small segments S^i , as shown in Fig. 6(a). The segments should be small enough that **Fig. 6** (a) The surface S is divided into segments S^i . For each segment, the flux of Berry connection can be calculated from the Berry phase around its boundary. (b) The top and bottom paths of each boundary cancel, leaving paths p^i which cross the Brillouin zone at a constant k_x . $$C_{\text{part.}}^{i} = \frac{1}{2\pi} \int_{S^{i}} \mathscr{F}(\mathbf{k}) . d\mathbf{S}$$ (11) is much smaller than one. The Chern number is then given as the sum of all segment integrals, $$C = \sum_{i} C_{\text{part.}}^{i} \tag{12}$$ Since $\mathcal{A}(\mathbf{k})$ can be made to be *locally* smooth [26, 33], we can use Stokes' theorem to obtain $$C_{\text{part.}}^{i} \mod 1 = \frac{1}{2\pi} \int_{\partial S^{i}} \mathscr{A}(\mathbf{k}) . d\mathbf{k} \mod 1 = \frac{\gamma_{\partial S^{i}}}{2\pi} \mod 1,$$ (13) where the modulus comes from the fact that the Berry phase is defined only modulo 2π . Since we imposed that $C^i_{\text{part.}}$ must be much smaller than one, we can still uniquely determine its value from $\gamma_{\partial S^i}/2\pi$ by adding an integer that minimizes the absolute value. Since the top and bottom parts of ∂S^i cancel out due to periodicity, we can write the Berry phase as $$\gamma_{\partial S^i} = \gamma_{p^{i+1}} - \gamma_{p^i},\tag{14}$$ where p^i and p^{i+1} are the paths at either side of the segment S^i , as shown in Fig. 6(b). The Berry phase can also be understood as a function of k_x , since each path p^i is given by a fixed k_x . Because both γ and k_x are periodic, the Berry phase describes a line on a torus, as shown in Fig. 7. The winding number of this line around the torus is exactly the Chern number [22]. In other words, the Chern number can be **Fig. 7** (a) The Berry phase γ as a function k_x for an example system with C=1. (b) Because both k_x and γ are periodic, the Chern number can be seen as the winding number of the Berry phase around a torus. calculated by *continuously* tracking the Berry phase on lines of constant k_x as it goes across the Brillouin zone. In practice, enforcing this continuity is a difficult task, and is the goal of the convergence options discussed in section 2.4. #### 1.2.3 Wilson loop and hybrid Wannier charge centers The problem of calculating the Chern number is now reduced to calculating the Berry phase for closed loops in the Brillouin zone. This can be done by calculating the so-called Wilson loop [3] W(C). The Wilson loop can be understood as a matrix that maps the states at a starting point \mathbf{k}_0 along the loop onto their images after parallel transport along C. For a discretization $\{\mathbf{k}_0, ..., \mathbf{k}_{n-1}, \mathbf{k}_n = \mathbf{k}_0\}$ of the path C, the Wilson loop can be approximated as [3, 9] $$W(C) = M^{\mathbf{k}_0, \mathbf{k}_1} \cdot \dots \cdot M^{\mathbf{k}_{n-1}, \mathbf{k}_n}, \tag{15}$$ where $$M_{m,n}^{\mathbf{k}_i,\mathbf{k}_j} = \left\langle u_{m,\mathbf{k}_i} \middle| u_{n,\mathbf{k}_j} \right\rangle \tag{16}$$ are the overlap matrices between Bloch functions at different **k**. The eigenvalues λ_i of the Wilson loop are connected to the total Berry phase by [15] $$\gamma_C = \sum_i \arg \lambda_i. \tag{17}$$ This reflects the fact that each λ_i is the rotation angle that is acquired by an eigenstate of the Wilson loop as it traverses the path C. Since the overlap matrices M can be readily computed, this gives a method for calculating the Chern number numerically. Of course, the convergence of the Wilson loop eigenvalues with respect to the discretization of C needs to be accounted for, which will be discussed in section 2.4. Another, equivalent, approach to calculating the Berry phase is by computing socalled hybrid Wannier charge centers [25, 24]. This method is based on the notion of Wannier orbitals, which are given by Fourier transforming the Bloch states: $$|\mathbf{R}n\rangle = \frac{V}{(2\pi)^d} \int_{BZ} e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n,\mathbf{k}}\rangle d\mathbf{k},$$ (18) where d is the dimensionality of the system, and V is the unit cell volume. The resulting orbitals are localized, in contrast to the extended nature of the Bloch waves. Since the Bloch states that are used to construct Wannier orbitals can be changed by a Gauge transformation, the same is true for the Wannier orbitals. Their properties, in particular the localization and position in real space, depend sensitively on this choice of Gauge[16]. For the purposes of computing topological invariants, we introduce *hybrid* Wannier orbitals [21, 25], which are Fourier transformed only in one spatial direction and remain extended in the others: $$\left| R_{x}, k_{y}, k_{z}; n \right\rangle = \frac{a_{x}}{2\pi} \int_{-\pi/a_{x}}^{\pi/a_{x}} e^{-ik_{x}R_{x}} \left| \psi_{n,\mathbf{k}} \right\rangle. \tag{19}$$ The average position of such an orbital can be thought of as a function of the remaining reciprocal space variables: $$\bar{x}_n(k_{\mathbf{v}}, k_{\mathbf{z}}) = \langle 0, k_{\mathbf{v}}, k_{\mathbf{z}}; n | \hat{x} | 0, k_{\mathbf{v}}, k_{\mathbf{z}}; n \rangle. \tag{20}$$ This quantity, known as the hybrid Wannier charge center (HWCC) is directly related to the Berry phase: $$\gamma_C = \frac{2\pi}{a} \sum_n \bar{x}_n,\tag{21}$$ where *C* is the path along which the hybrid Wannier orbitals were Fourier transformed. Moreover, if the Gauge is chosen such that these hybrid Wannier orbitals are maximally localized, the individual HWCC correspond to the eigenvalues of the Wilson loop [9] $$\bar{x}_i = \frac{2\pi}{a} \arg(\lambda_i),\tag{22}$$ up to possible reordering. This equivalence between hybrid Wannier charge centers and the Berry phase gives rise to a physical interpretation of the Chern number C. As the momentum (k_x) , in the case of Fig. 7) is varied across the Brillouin zone, the average position of the electrons in the orthogonal direction can change. Due to the periodicity of k_x , it must come back to the same position within the unit cell, but it can change into a different unit cell. This represents a *charge pumping* process, where each cycle of k_x moves the charge by C unit cells. ## 2 The Z2Pack code Having defined the Chern number and how it can be calculated in theory, we will now see how this knowledge can be applied in practice. First, we will give a brief overview of the Z2Pack code, introducing the necessary components for calculating Chern numbers. Next, we will show two examples, the Haldane model of a Chern insulator and the Weyl semimetal. Finally we conclude this section with a discussion of the convergence options available in Z2Pack. ### 2.1 Introduction to the code Z2Pack is a Python [31] library which provides functionality for computing topological invariants. A basic knowledge of the Python language is required for using the code. For this, the reader is referred to the many excellent Python tutorials available on-line, in particular the official Python tutorial [1]. In the
following, we will give a short introduction to using Z2Pack. For a more detailed description of the classes and functions described here, the reader may wish to consult the on-line documentation at www.z2pack.ethz.ch/doc. In order to calculate the Chern number with Z2Pack, two inputs are needed: A description of the material (system), and a parametrization of the surface on which the invariant should be calculated. These inputs are passed to a function which cal- culates the hybrid Wannier charge center evolution across the surface. Optionally, this function can regularly save its progress to a file, to allow restarting aborted calculations. The result of this calculation can then be used to evaluate the Chern number or other topological invariants, and create plots. Figure 8 shows an overview of this process, and the modules involved in each step. We will now describe these steps in a bit more detail, and show some example code. **Fig. 8** (a) Overview of the process for calculating topological invariants for a reciprocal space surface of a given material. (b) Python modules corresponding to each of the steps in calculating topological invariants. The system for which topological invariants are to be calculated can be given in three different ways: First, it can be defined as an explicit function $H(\mathbf{k})$ describing the Hamiltonian matrix. This is useful for theoretical models, or when using the $\mathbf{k}.\mathbf{p}$ approximation. Listing 1 shows how such a system can be created using the z2pack.hm.System class. The first, required, input is a function that takes \mathbf{k} and returns the corresponding matrix $H(\mathbf{k})$. An optional keyword argument bands can be passed to the class, to describe which band indices the topological invariant should be calculated for. It can be given either as an integer N, such that the lowest N bands will be taken into account, or as an explicit list of band indices. As is customary in Python, the lowest band has index 0. By default, the lower half of all bands are taken into account. **Listing 1** Example code for creating a System class defined with an explicit Hamiltonian matrix. Second, the system can be given as a tight-binding model. For this, the TBmodels package is used, 4 which allows for defining tight-binding models either manually or from the output of the Wannier90 [17, 18] code. This is shown in listing 2. For more details about how to construct the tight-binding model, we refer to the TBmodels documentation: www.z2pack.ethz.ch/tbmodels. ``` import tbmodels # Create tight-binding model model = tbmodels.Model(...) # Example: Model from Wannier90 output file model = tbmodels.Model.from_hr_file('wannier90_hr.dat') system = z2pack.tb.System(model) ``` Listing 2 Creating a tight-binding system by using the tbmodels. Model class. Finally, the system can be given as a first-principles calculation. As we have seen in section 1.2.3, the overlap matrices $M^{\mathbf{k}_i,\mathbf{k}_j}$ between states at different k-points along a path are needed to calculate the hybrid Wannier charge centers. Z2Pack makes use of the fact that the Wannier90 code [17, 18] also requires these as an input. As a result, Z2Pack is in principle compatible with all DFT codes which interface to Wannier90, and the user needs to create the same input files as for running Wannier90. Since Z2Pack needs to dynamically call the first-principles code for different k-points, a ⁴ TBmodels was initially developed as part of Z2Pack, but later separated because it can be used outside of the scope of calculating topological invariants. function with which the k-point input can be created also needs to be supplied. For some codes, this is implemented in the z2pack.fp.kpoint module. Listing 3 shows how a first-principles system is defined to be used with VASP [14]. Listing 3 Defining a first-principles system for use with the VASP code. Apart from the system, the only other input required for running a calculation is the surface on which the Chern number should be evaluated. This is simply given as a function $$f: [0,1]^2 \longrightarrow \mathbb{R}^d$$ $$(s,t) \longmapsto \mathbf{k}$$ $$(23)$$ which parametrizes the surface. Listing 4 shows a simple example for a surface function. It is important to note here that \mathbf{k} should be given in reduced coordinates $\mathbf{k} \in [0,1)^d$. The reason for this is that it simplifies many things, for example checking if the surface is a closed one. ``` # Defining an explicit function def surface(s, t): return [s, t, 0] # Equivalent expression using a lambda surface = lambda s, t: [s, t, 0] ``` **Listing 4** Two ways of defining a simple surface across the BZ at $k_z = 0$. Given a system and surface, the hybrid Wannier charge centers can be calculated by calling the z2pack.surface.run function (see listing 5). The return value of this function can then be passed to the z2pack.invariant.chern function to evaluate the Chern number. A simple plot of the sum of HWCC can be created by passing the result to the z2pack.plot.chern function. Since the plotting functionality is based on the popular matplotlib [11] library, the appearance of the plots can be fully customized using matplotlib commands. ``` result = z2pack.surface.run(system=system, surface=lambda s, t: [s, t, 0] by the system is surface = lambda s, t: [s, t, 0] the system is surface = lambda s, t: [s, t, 0] the system is surface in the system is surface in the system t ``` ``` # Plot sum of HWCC fig = z2pack.plot.chern(result) fig.show() ``` **Listing 5** Example code for calculating the hybrid Wannier charge centers, evaluating the Chern number and creating a simple plot. The result object created by the run method can be saved into a file using the z2pack.io.save method (see listing 6). To retrieve the stored object, the z2pack.io.load method can be used. ``` result = ... # saving z2pack.io.save(result, 'file_path.json') # loading result = z2pack.io.load('file_path.json') ``` Listing 6 Saving and loading Z2Pack results to a file. Since the run calculation might take a while — especially for first-principles calculations — it is sometimes necessary to restart from an unfinished calculation. For this purpose, the <code>save_file</code> keyword can be specified when calling run, which means that the result will periodically be saved into the given file. If the <code>load</code> flag is set to <code>True</code>, the code will check for an existing result in that file before starting the calculation (see listing 7). One needs to be careful however not to load old results the system or surface has changed. Another way to restart calculations is by explicitly passing a result, using the <code>init_result</code> keyword. ``` # Restart from file result = z2pack.surface.run(system=system, surface=surface, save_file='file_path.json', load=True # Restart from result result2 = z2pack.surface.run(system=system, surface=surface, init_result=result ``` **Listing 7** The run method can be restarted either from a result saved in a file, or by explicitly passing a result. Finally, during the run call, Z2Pack continuously writes information about the current status to the console. Depending on the use case, this might be an unwanted distraction. Since Z2Pack uses the Python standard module logging for this pur- pose, its verbosity can easily be changed by setting the so-called *level* of the messages that will be printed, as shown in listing 8. The log level describes the severity of a given message. In Z2Pack, the two levels logging. INFO (for general messages) and logging. WARNING (for convergence issues) are used. Only messages which are at least as severe as the current level will be shown. ``` import logging # Only show messages with at least 'WARNING' level importance logging.getLogger('z2pack').setLevel(logging.WARNING) ``` Listing 8 By setting the log level, the messages printed by Z2Pack can be filtered by severity. ## 2.2 The Haldane model ⁵ The Haldane model [10] is a simple theoretical model for a Chern insulator. It describes two interleaved sub-lattices forming a honeycomb lattice, as shown in figure 9. The two sub-lattices have opposite on-site energies $\pm M$. Nearest- and next-nearest-neighbor hopping terms are included with strength t_1 and t_2 , respectively. In order to break time-reversal symmetry, a microscopic magnetic field is introduced, adding a phase ϕ to the next-nearest-neighbor hopping. The full Hamiltonian of the system is given by $$H(\mathbf{k}) = 2t_2 \cos \phi \left(\sum_i \cos(\mathbf{k} \cdot \mathbf{b}_i) \right) \mathbb{I} + t_1 \sum_i \left[\cos(\mathbf{k} \cdot \mathbf{a}_i) \sigma^x + \sin(\mathbf{k} \cdot \mathbf{a}_i) \sigma^y \right]$$ $$+ \left[M - 2t_2 \left(\sum_i \sin(\mathbf{k} \cdot \mathbf{b}_i) \right) \right] \sigma^z,$$ (24) where \mathbf{a}_i and \mathbf{b}_i are the vectors connecting nearest- and next-nearest-neighbors (solid orange / dashed blue arrows in Fig. 9), respectively, and σ^i are the Pauli matrices. In this example, we will calculate the Chern number for the Haldane model for a particular value of the parameters M, t_1 , t_2 , and ϕ . First, we define a function describing the Hamiltonian, as a function of these parameters and \mathbf{k} , as shown in listing 9. ``` # Define the Pauli matrices IDENTITY = np.identity(2, dtype=complex) PAULI.X = np.array([[0, 1], [1, 0]], dtype=complex) PAULI.Y = np.array([[0, -1j], [1j, 0]], dtype=complex) PAULI.Z = np.array([[1, 0], [0, -1]], dtype=complex) # Define the function H(k) ``` ⁵ Figures and text in this section are partly copied from previous work of the authors [8]. **Fig. 9** A honeycomb lattice, with A and B sites marked with filled and empty circles, respectively. The unit cell is marked with a dotted green line. Nearest neighbors are indicated with a solid orange arrow, and next-nearest neighbors with a dashed blue arrow. ``` def Hamilton(k, m, t1,
t2, phi): kx, ky = k k_a = 2 * np.pi / 3. * np.array([10 kx + ky, -2 * kx + ky, kx - 2 * ky 11 12 1) k_b = 2 * np.pi * np.array([kx, ky, ky - kx]) 13 14 H = (2 * t2 * np.cos(phi) * 15 sum([np.cos(val) for val in k_b]) * IDENTITY 16 17 H += t1 * sum([np.cos(val) for val in k_a]) * PAULI_X 18 H += t1 * sum([np.sin(val) for val in k_a]) * PAULI_Y H += m * PAULI_Z 20 H -= (21 2 * t2 * np. sin(phi) * 22 sum([np.sin(val) for val in k_b]) * PAULI_Z 23 return H ``` Listing 9 Defining a function that describes the Haldane Hamiltonian. Next, we set some constants for the parameters M, t_1 , t_2 , ϕ , and create a Z2Pack system from the Hamiltonian function as shown in listing 10. We will take into account only the lower (occupied) band. Because the Hamilton function only takes a two-dimensional \mathbf{k} , we specify the dimension using the dim keyword. We can then run a surface calculation for this system. ``` M = 0.1 T1 = 1. T2 = 0.2 PHI = 0.5 * np.pi # Create a Z2Pack system system = z2pack.hm.System(lambda k: Hamilton(k, m=M, t1=T1, t2=T2, phi=PHI), bands=1, 10 dim=2 11 12 # Run the surface calculation result = z2pack.surface.run(14 system=system, 15 surface=lambda s, t: [t, s] 16 17 ``` **Listing 10** Defining a system and running the surface calculation for specific values of the Haldane parameters. Finally, we evaluate the Chern number, and create a figure that shows the HWCC evolution, as shown in listing 11. This produces the image shown in figure 10. The complete Haldane model example can be seen in listing 12. ``` # Evaluate the Chern number print('Chern number:', z2pack.invariant.chern(result)) # Create a figure fig, ax = plt.subplots(figsize=[4, 3]) z2pack.plot.chern(result, axis=ax) ax.set_xlabel(r'k_y') ax.set_ylabel(r'$\sum_i\,\bar{x}_i$', rotation='horizontal', ha='right') ax.set_xticks([0, 1]) ax.set_yticks([0, 1]) fig.savefig('haldane.pdf', bbox_inches='tight') ``` Listing 11 Evaluating the Chern number and creating a plot from the calculation result. ``` import logging import z2pack import numpy as np import matplotlib.pyplot as plt logging.getLogger('z2pack').setLevel(logging.WARNING) # Define the Pauli matrices IDENTITY = np.identity(2, dtype=complex) PAULI_X = np.array([[0, 1], [1, 0]], dtype=complex) PAULI_Y = np.array([[0, -1j], [1j, 0]], dtype=complex) PAULI_Z = np.array([[1, 0], [0, -1]], dtype=complex) PAULI_Z = np.array([[1, 0], [0, -1]], dtype=complex) ``` **Fig. 10** The sum of HWCC as a function of k_x for the Haldane model with M = 0.1, $t_1 = 1$, $t_2 = 0.2$, and $\phi = \pi/2$. Since the HWCC wind around the torus once in positive direction, the Chern number is C = 1. ``` 14 # Define the function H(k) 15 def Hamilton(k, m, t1, t2, phi): 16 kx, ky = k 17 k_a = 2 * np.pi / 3. * np.array([18 kx + ky, -2 * kx + ky, kx - 2 * ky 19 20 1) k_b = 2 * np.pi * np.array([kx, ky, ky - kx]) 21 H = (22 2 * t2 * np.cos(phi) * 23 sum([np.cos(val) for val in k_b]) * IDENTITY 24 H += t1 * sum([np.cos(val) for val in k_a]) * PAULI_X 26 H += t1 * sum([np.sin(val) for val in k_a]) * PAULI_Y 27 H += m * PAULI_Z 28 H -= (2 * t2 * np.sin(phi) * sum([np.sin(val) for val in k_b]) * PAULI_Z 31 32 return H 33 # Set the constants for the Haldane model 35 M = 0.1 36 T1 = 1. 37 T2 = 0.2 PHI = 0.5 * np.pi # Create a Z2Pack system 41 system = z2pack.hm.System(42 lambda k: Hamilton(k, m=M, t1=T1, t2=T2, phi=PHI), 43 bands=1, 44 dim=2 45 ``` ``` 46 47 # Run the surface calculation result = z2pack.surface.run(48 system=system, 49 surface=lambda s, t: [t, s] 50 51 # Evaluate the Chern number 53 print('Chern number:', z2pack.invariant.chern(result)) # Create a figure fig, ax = plt.subplots(figsize=[4, 3]) z2pack.plot.chern(result, axis=ax) ax.set_xlabel(r'k_y') 59 ax.set_ylabel(60 r'$\sum_i\,\bar{x}_i$', rotation='horizontal', ha='right' 61 62 ax.set_xticks([0, 1]) 63 ax.set_yticks([0, 1]) fig.savefig('haldane.pdf', bbox_inches='tight') ``` Listing 12 The complete Haldane model example. # 2.3 Identifying Weyl semimetals So far, we have considered the Chern number in the context of insulating materials. From the discussion in section 1.1.3, we know that a Chern number can be defined on any closed two-dimensional surface in the Brillouin zone where the bands are gapped. However, in three-dimensional materials the band gap can still close outside of that specific surface. This can be used to classify topological semimetals, in particular to identify so-called Weyl nodes. Weyl nodes are linear touching points of two bands in a single point. Their Hamiltonian can locally be described as [20] $$H(\mathbf{k}) = \sum_{\substack{i \in \{x, y, z\} \\ j \in \{0, x, y, z\}}} A_{i, j} k_i \sigma^j,$$ (25) where σ^j are the Pauli matrices, and $A_{i,j}$ characterizes the Weyl node. Topologically, Weyl nodes are remarkable because they are a quantized source or sink of Berry connection, depending on their chirality [32]. Since the Chern number measures the flux of Berry connection through a surface, we can determine the chirality of a Weyl node by calculating the Chern number on a sphere enclosing it [23, 9]. Listing 13 shows how the Chern number can be calculated for a simple symmetric Weyl node $H(\mathbf{k}) = \sum_i k_i \sigma^i$. The techniques used are the same as for the Haldane example. For defining the surface – a sphere of radius r = 0.01 – Z2Pack provides a helper function z2pack.shape.Sphere, with which a sphere can be defined through its center and radius. The plot created in this example is shown in figure 11. ``` import numpy as np import matplotlib.pyplot as plt import z2pack # Define Pauli vector PAULI_X = np.array([[0, 1], [1, 0]], dtype=complex) \begin{array}{lll} PAULI_Y = & np. \ array ([[0 \,, \, -1j \,] \,, \, [1j \,, \, \, 0]] \,, \, \, dtype = & complex) \\ PAULI_Z = & np. \ array ([[1 \,, \, \, 0] \,, \, [0 \,, \, \, -1]] \,, \, \, dtype = & complex) \end{array} PAULI_VECTOR = list([PAULI_X, PAULI_Y, PAULI_Z]) 11 def Hamilton(k): 12 ""simple 2-band hamiltonian k.sigma with a Weyl point at k=0"" 13 res = np.zeros((2, 2), dtype=complex) 14 for kval, p_mat in zip(k, PAULI_VECTOR): 15 res += kval * p_mat 16 return res 17 18 # Create the System 19 system = z2pack.hm.System(Hamilton) 20 # the surface is a sphere around the Weyl point 22 result = z2pack.surface.run(24 system=system, surface=z2pack.shape.Sphere([0., 0., 0.], 0.01) 25 26 print('Chern number:', z2pack.invariant.chern(result)) 27 # Create plot fig, ax = plt.subplots(figsize = [4, 3]) z2pack.plot.chern(result, axis=ax) ax.set_xlabel(r'\$\theta\$') ax.set_xticks([0, 1]) ax.set_xticklabels([r'0', r'π']) 35 ax.set_ylabel(r'$\bar{\phi}$', rotation='horizontal') ax.set_yticks([0, 1]) ax.set_yticklabels([r'0', r'2π']) ax.set_title(r'\$\vec\{k\}.\vec\{\sigma\}\$') plt.savefig('weyl.pdf', bbox_inches='tight') ``` Listing 13 Calculating the Chern number for a simple k.p model of a Weyl node. ## 2.4 Convergence options In the previous examples, we have used the surface.run function without specifying any convergence options. This means that we relied on the default values Fig. 11 The HWCC on loops around a sphere enclosing a Weyl node, as a function of the altitude angle θ . defined in Z2Pack. While these should work for a wide range of potential applications, it is still important to understand the convergence mechanisms and how they can be tuned. First, we should note that for the convergence criteria described here, the individual hybrid Wannier charge centers are taken into account, not only their sum. Figure 12 shows a typical evolution of HWCC \bar{x}_i evaluated at discrete values of k_y . Note that the HWCC are not connected across different k_y , since it is not possible to uniquely identify them. Fig. 12 Hybrid Wannier charge center evolution along half of the $k_z = 0$ plane for Bismuth. The first convergence option defined in Z2Pack is convergence with respect to the discretization along the line for which the HWCC are calculated. In rough terms, the number of k-points along the line is increased until the change in HWCC positions is less than a certain threshold, pos_tol. How many k-points are used in each step is defined by the iterator keyword. This input can be any iterable object (for example a list) of integers. By default, it is set to range (8, 27, 2), meaning that the code will start with eight k-points, and then increase in steps of two until 26. If convergence is still not reached after this point, a warning will be generated. In this case, the best course of action is usually to increase the maximum number of k-points and restart the calculation from the previous result. One detail that might be worth noting is how the movement of HWCC is calculated. Since, as mentioned above, the HWCC cannot be uniquely identified, we can not simply calculate the movement for each charge center individually. Because a HWCC can cross from 1 to 0 or vice versa, indexing them by their position from zero also does not work. Instead, the HWCC are indexed starting from the *largest gap*⁶ between any two HWCC (when considering both the old and new charge centers), as shown in Figure 13. The positions of HWCC with the same index are then compared, and the maximum of these differences is computed. | 82 | 02
01 | 8 | |--------------------------|----------|-------------| | 0 6
0 5 | 06
05 | largest gap | | 04
03 | O4
O3 | 0 | | old | new | combined | Fig. 13 For comparing their positions, HWCC are indexed starting from the largest gap between any two charge centers. In addition to convergence along a single k-point line, convergence in the orthogonal direction needs to be taken into account. This corresponds to the discretization shown in section 1.2.2. Using the same technique as before, the movement of HWCC between two neighboring lines is calculated. If it is larger the threshold value move_tol, an additional line is added between the two neighbors. To avoid calculations
running indefinitely, which could occur if there is a discontinuity in the HWCC spectrum due to a band gap closure, a minimum allowed distance between neighboring lines min_neighbor_dist is defined. Again, a warning is issued ⁶ Note that this gap in the HWCC spectrum is not related to the band gap of the energy spectrum. if convergence cannot be reached. It is important to note that, due to the way the movement is calculated, two HWCC that exactly exchange places cannot be detected. This can happen in cases where the band gap becomes very small at some point in the Brillouin zone, and the character of the bands changes very rapidly. For such systems, it is important to increase the initial number of lines through the num_lines keyword. Finally, Z2Pack also monitors the distance between the middle of largest gap in each line, and the HWCC positions in neighboring lines (see Fig. 14). If the distance is smaller than gap_tol times the size of the largest gap, an additional line is again placed between the two neighboring lines. The reason for this additional test should become obvious in the next section, as it is related to how the \mathbb{Z}_2 invariant is calculated. Scaling the tolerance with the size of the largest gap is necessary in this case because otherwise the condition can be impossible to fulfill, especially when there are many evenly-spaced HWCC. Fig. 14 The minimum distance between the middle of the largest gap (orange diamond) and HWCC (blue circle) in neighboring lines determines whether the gap_tol criterion is met. # 3 Time-reversal symmetry: \mathbb{Z}_2 classification 7 In the previous sections, we have seen how an isolated set of bands can be classified topologically according to their Chern number. Now, we will show how this classification can be enriched in the presence of symmetries. In particular, we will show that time-reversal invariant materials can be classified according to a \mathbb{Z}_2 index. After a theoretical introduction, we describe how the \mathbb{Z}_2 index is computed with Z2Pack. Finally, the example of a tight-binding model in the non-trivial \mathbb{Z}_2 phase is shown. ⁷ Figures and text in this section were partly copied from previous work of the authors [8, 9] #### 3.1 Individual Chern numbers In section 1.1.2, we have seen that topological phases can be defined on manifolds in reciprocal space, if we choose a set of Bloch functions $\{|u_{n,k}\rangle\}$ such that they span a smooth vector space V_k . The most convenient way of achieving this smoothness, which we have used so far, is by choosing an isolated set of bands. This leads to a classification into topological states which can only be adiabatically changed by closing the band gap, and are characterized by the Chern number. However, choosing isolated bands is by no means the only possible way to create a smooth V_k . For the Hamiltonian of eq. 3 for example, we could just pick state $|a\rangle$ everywhere. Here, we aim to find a more complex topological classification by sub-dividing the occupied states into smooth parts. In general, if the Hilbert space \mathcal{H} of a given problem can be written as a sum of smooth Hilbert spaces, $$\mathcal{H} = \bigoplus_{i} \mathcal{H}_{i},\tag{26}$$ then each of the Hilbert spaces has a well-defined Chern number C_i . These *individual Chern numbers* [25] sum together to the Chern number of the full Hilbert space: $$C = \sum_{i} C_{i}.$$ (27) However, in general these individual Chern numbers do not carry much meaning, since the choice how to split up the Hilbert space is arbitrary. In the presence of a symmetry S however, the Hilbert space can be split up according to the symmetry eigenvalues. For example, consider a mirror symmetry with eigenvalues $\pm i$. On the mirror-symmetric surface, S and $H(\mathbf{k})$ commute. Therefore, the Bloch functions $|u_{n,\mathbf{k}}\rangle$ can be separated into +i and -i eigenstates. Both eigenspaces have a well-defined Chern number: $$C = C_i + C_{-i}. (28)$$ This gives rise to a *symmetry-protected* [27, 7, 2] topological classification. Materials can have a zero total Chern number, but non-zero individual Chern numbers. Such a topological phase is protected as long as both the band gap remains open and the symmetry is respected. If the symmetry is broken, a mixing of the two eigenspaces can change the topological phase. Time-reversal symmetry θ leads to a particularly interesting and well-known topological classification. Unlike spatial symmetries, it is an anti-unitary symmetry and squares to -1 in the spinful case. As a result, the Bloch functions come in so-called Kramers pairs [13, 12] $$\theta \left| u_{m,\mathbf{k}}^{I} \right\rangle = \left| u_{m,\mathbf{k}}^{II} \right\rangle$$ $$\theta \left| u_{m,\mathbf{k}}^{II} \right\rangle = -\left| u_{m,\mathbf{k}}^{I} \right\rangle.$$ (29) There is a Gauge in which these states are smooth [25, 33], and thus they have well-defined, opposite [24] individual Chern numbers $$C_m^I = -C_m^{II}. (30)$$ Furthermore, the hybrid Wannier charge centers are related by [24] $$\bar{x}_m^I(k_v) = \bar{x}_m^{II}(-k_v),$$ (31) meaning that they are degenerate for the time-reversal invariant lines $k_y = 0, \pi$. In order to define a topological invariant, we group the states by their pair indices I, II. The two groups then have individual Chern numbers $$C^{I} = -C^{II}. (32)$$ However, these Chern numbers are not Gauge invariant. This can be seen by changing the sign of one of the two states: $$\begin{vmatrix} \tilde{u}_m^{II} \rangle = |u_m^{I} \rangle \\ |\tilde{u}_m^{I} \rangle = -|u_m^{II} \rangle \end{vmatrix}$$ (33) These states still obey eq. 29, and the individual Chern number of each state remains the same. Yet the two states have switched their pair indices. As a result, the Chern number C^I is changed by $C_m^{II} - C_m^I = 2C_m^{II}$. Since this re-labeling of Kramers pairs can only ever change the Chern numbers by an even number, a topological invariant can be defined as $$\mathbb{Z}_2 = C_m^I \mod 2. \tag{34}$$ In practice, the states do not need to be split by their pair indices to calculate the \mathbb{Z}_2 invariant. Instead, we can use the fact that the hybrid Wannier charge centers must be doubly degenerate at the time-reversal invariant momenta. An arbitrary line between zero and π (dotted green line in Fig. 15) will cross an even number of HWCC in the topologically trivial case, and an odd number in the non-trivial case [24]. This principle is used in Z2Pack to calculate the \mathbb{Z}_2 invariant. When computing the \mathbb{Z}_2 invariant numerically, the challenge in using the approach described above is that we cannot uniquely identify hybrid Wannier charge centers. In other words, we do not know how the HWCC connect between two discrete values of k_y . We can get around this issue however by cleverly choosing the line $x_{\text{cut}}(k_y)$ for which the number of crossings is counted. Since we want a crossing to be as obvious as possible, we choose it to always be in the middle of the largest gap between any two HWCC, as shown in figure 16. The number of crossings is then counted by summing up the HWCC which lie between the current and previous value of the largest gap. The interface for calculating the \mathbb{Z}_2 invariant in Z2Pack is very similar to that for calculating the Chern number. Given the result of a surface calculation, it can be evaluated with the <code>z2pack.invariant.z2</code> function. Note that the surface which is used to calculate the HWCC should cover only half the Brillouin zone. **Fig. 15** Hybrid Wannier charge centers for a two-band time-reversal invariant system. (a) Trivial phase. The two bands each have a zero individual Chern number. (b) Non-trivial phase. The two bands have individual Chern numbers ± 1 . **Fig. 16** Sketch showing the \mathbb{Z}_2 calculation. (a) Continuous case. The HWCC (solid blue line) are crossed exactly once by x_{cut} (dashed orange line), at the green point. (b) Discrete case. The HWCC (blue circles) and middle of the largest gap (orange diamonds) are known only for discrete k_y . Crossings are counted when the HWCC value lies between the largest gaps of the current and previous lines (green circle). # 3.2 Tight-binding example For the final example in this chapter, we will consider a system of two interpenetrating square lattices A and B each carrying one electron per unit cell, as shown in Fig. 17. Let us take into account nearest and next-nearest neighbor hopping terms, with strength t_1 and t_2 , respectively. Each lattice site has two possible states (spin up / down), both carrying equal on-site energies +1 for sub-lattice A, and -1 for sub-lattice B. Fig. 17 Two inter-penetrating square lattices. The unit cell is shown in green (dotted line). Solid orange arrows connect nearest neighbors, and dashed blue arrows connect next-nearest neighbors. Including only hopping terms between orbitals of the same spin direction, let the nearest-neighbor hopping terms from sub-lattice A to B have phases $\{1,i,-i,-1\}$ (counter-clockwise) for the spin-up case, and its conjugate for the spin down case. Next-nearest neighbor hopping terms do not carry a phase, but are positive for sub-lattice A and negative for sub-lattice B. The resulting Hamiltonian is $$H(k_{x},k_{y}) = (1 + 2t_{2} \left[\cos k_{x} + \cos k_{y}\right]) \sigma_{z} \otimes \sigma_{0}$$ $$-2t_{1} \left[\sin \left(\frac{k_{x} + k_{y}}{2}\right) \sigma_{y} \otimes \sigma_{0} + \sin \left(\frac{k_{x} - k_{y}}{2}\right) \sigma_{x} \otimes \sigma_{z}\right].$$ (35) The tight-binding model is built using the TBmodels code, as shown in listing 14. In the constructor of the tmodels. Model, the positions, on-site energies and occupation number are set. Then, the add_hop method is used to add all hopping terms. Note that the inverse hopping terms (e.g., nearest-neighbor hopping from sub-lattice B
to A) are added automatically. The surface calculation is performed in exactly the same way as for the previous examples, except that the surface now only covers half the Brillouin zone. Finally, the z2pack.plot.wcc method is used to plot the HWCC, and z2pack.invariant.z2 is used to calculate the \mathbb{Z}_2 invariant. The resulting plot can be seen in figure 18, showing the non-trivial \mathbb{Z}_2 phase. ``` import itertools import z2pack import tbmodels ``` Fig. 18 Hybrid Wannier charge center evolution (black circles) and their largest gap (blue diamonds) for the system of two inter-penetrating square lattices, with $t_1 = 0.2$ and $t_2 = 0.3$. ``` import matplotlib.pyplot as plt T1, T2 = (0.2, 0.3) # Create a "bare" tight-binding model, with only # on-site energies. 10 11 model = tbmodels.Model(on_site = (1, 1, -1, -1), pos = [[0., 0.], [0., 0.], [0.5, 0.5], [0.5, 0.5]], 13 occ=2, 14 15 16 # Add nearest neighbor hopping terms 17 for phase, R in zip(18 [1, 1j, -1j, -1], 19 itertools.product([0, -1], [0, -1]) 20 21): model.add_hop(22 overlap=phase * T1, 23 orbital_1 = 0, 24 orbital_2 = 2, 25 R=R 26 27 model.add_hop(28 overlap=phase.conjugate() * T1, 29 orbital_1 = 1, 30 orbital_2=3, 31 R=R 32 33 # Add next-nearest neighbor hopping terms for R in (``` ``` (r[0], r[1]) for r in itertools.permutations ([0, 1]) 37): 38 model.add_hop(T2, 0, 0, R) 39 model.add_hop(T2, 1, 1, R) 40 41 42 # Create System instance 44 tb_system = z2pack.tb.System(model, dim=2) 45 # Run HWCC calculation result = z2pack.surface.run(system=tb_system, surface=lambda s, t: [t, s / 2.] 49 50 51 # Create figure 52 fig, ax = plt.subplots(figsize=[4, 3]) z2pack.plot.wcc(result, axis=ax) ax.set_xlabel(r'k_y') ax.set_xticks([0, 1]) ax.set_xticklabels([r'0', r'π']) ax.set_ylabel(r'\$\bar\{x}_i\$', rotation='horizontal') 58 ax.set_yticks([0, 1]) plt.savefig('tb_wcc.pdf', bbox_inches='tight') 60 # Calculate Z2 invariant print("Z2 invariant:", z2pack.invariant.z2(result)) ``` **Listing 14** Calculating the \mathbb{Z}_2 invariant for a tight-binding model of two inter-penetrating square lattices. **Acknowledgements** The authors were supported by Microsoft Research, the Swiss National Science Foundation through the National Competence Centers in Research MARVEL and QSIT, and the ERC Advanced Grant SIMCOFE. ## References - 1. The Python tutorial. [Online; accessed 2018-01-14]. - A. Alexandradinata and B. A. Bernevig. Berry-phase description of topological crystalline insulators. Phys. Rev. B, 93(20):205104, 2016. - A. Alexandradinata, X. Dai, and B. A. Bernevig. Wilson-loop characterization of inversionsymmetric topological insulators. *Phys. Rev. B*, 89(15):155114, 2014. - B. A. Bernevig and T. L. Hughes. Topological insulators and topological superconductors. Princeton University Press, 2013. - F. Bloch. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift für Physik, 52(7):555–600, Jul 1929. - S.-S. Chern. Characteristic classes of Hermitian manifolds. Annals of Mathematics, pages 85–121, 1946. - 7. L. Fu. Topological crystalline insulators. Phys. Rev. Lett., 106(10):106802, 2011. - D. Gresch. Identifying topological states in matter. Master's thesis, ETH Zurich, Zurich, Switzerland, 2015. - D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt, B. A. Bernevig, and A. A. Soluyanov. Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials. *Phys. Rev. B*, 95:075146, Feb 2017. - F. D. M. Haldane. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the parity anomaly. *Phys. Rev. Lett.*, 61(18):2015–2018, 1988. - J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science & Engineering, 9(3):90–95, 2007. - 12. C. L. Kane and E. J. Mele. \mathbb{Z}_2 topological order and the quantum spin Hall effect. *Phys. Rev. Lett.*, 95:146802, 2005. - C. L. Kane and E. J. Mele. Quantum spin Hall effect in graphene. *Phys. Rev. Lett.*, 95:226801, 2005 - G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Computational Materials Science*, 6(1):15–50, 1996. - 15. R. Leone. The geometry of (non)-Abelian adiabatic pumping. *Journal of Physics A: Mathematical and Theoretical*, 44(29):295301, 2011. - N. Marzari and D. Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. *Phys. Rev. B*, 56(20):12847–12865, 1997. - A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari. wannier90: A tool for obtaining maximally-localised Wannier functions. *Computer Phys. Comm.*, 178(9):685–699, 2008. - A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. *Computer Phys. Comm.*, 185(8):2309–2310, 2014. - 19. M. Nakahara. Geometry, Topology and Physics. Taylor and Francis Group, 2003. - H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl Fermions in a crystal. *Physics Letters B*, 130(6):389–396, 1983. - C. Sgiarovello, M. Peressi, and R. Resta. Electron localization in the insulating state: Application to crystalline semiconductors. *Phys. Rev. B*, 64(11):115202, 2001. - A. A. Soluyanov. Topological aspects of band theory. PhD thesis, Rutgers University-Graduate School-New Brunswick, 2012. - A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig. Type-II Weyl semimetals. *Nature*, 527(7579):495–498, 2015. - A. A. Soluyanov and D. Vanderbilt. Computing topological invariants without inversion symmetry. *Phys. Rev. B*, 83:235401, 2011. - 25. A. A. Soluyanov and D. Vanderbilt. Wannier representation of \mathbb{Z}_2 topological insulators. *Phys. Rev. B*, 83(3):035108, 2011. - A. A. Soluyanov and D. Vanderbilt. Smooth gauge for topological insulators. *Phys. Rev. B*, 85(11):115415, 2012. - J. C. Y. Teo, L. Fu, and C. L. Kane. Surface states and topological invariants in threedimensional topological insulators: Application to Bi_{1-x}Sb_x. Phys. Rev. B, 78:045426, 2008. - T. Thonhauser and D. Vanderbilt. Insulator/Chern-insulator transition in the Haldane model. *Phys. Rev. B*, 74(23):235111, 2006. - 29. D. J. Thouless. Wannier functions for magnetic sub-bands. J. Phys. C, 17(12):L325, 1984. - D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. *Phys. Rev. Lett.*, 49(6):405–408, 1982. - 31. G. Van Rossum et al. Python programming language. In *USENIX Annual Technical Conference*, volume 41, 2007. - G. Volovik. Zeros in the Fermion spectrum in superfluid systems as diabolical points. *JETP Lett*, 46(2), 1987. - G. W. Winkler, A. A. Soluyanov, and M. Troyer. Smooth gauge and Wannier functions for topological band structures in arbitrary dimensions. *Phys. Rev. B*, 93(3):035453, 2016. - 34. J. Zak. Berry's phase for energy bands in solids. Phys. Rev. Lett., 62(23):2747–2750, 1989.