
Calculating topological invariants with Z2Pack

Dominik Gresch and Alexey Soluyanov

Abstract The topological phase of non-interacting electronic bandstructure can be
classified by calculating integer invariants. In this chapter, we introduce the Chern
invariant that classifies 2D materials in the absence of symmetry. We then show that
this invariant can be used as the building block for the classification of topological
insulators, semimetals and symmetry-protected topological phases. We show how
this classification is performed in practice by introducing Z2Pack, a tool which
allows calculating topological invariants from k · p and tight-binding models, as
well as first-principles calculations.

1 The Chern number

In this section, we give a coarse introduction to topological invariants in the context
of classifying crystalline solids. In the interest of brevity, we will skip many of the
mathematical details, instead focusing on conveying an intuitive understanding as
required to follow the rest of this chapter. For a more thorough description of the
topics covered here, the reader is referred to references [19, 4].
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e-mail: soluyanov@phys.ethz.ch

1



2 Dominik Gresch and Alexey Soluyanov

1.1 Topology in non-interacting materials

In this first section, we will introduce the notion of topological properties in the
context of non-interacting materials. From their basic definition, we will see that
topological phases must exhibit some interesting physical phenomena.

1.1.1 A short reminder on band theory

We will start with a short reminder about band theory. A more thorough description
of the subject can be found in any solid-state physics textbook.

In the non-interacting limit, electronic states in crystalline materials can be de-
scribed by a single-particle Hamiltonian H(k), which is a smooth function of the
crystal wave-vector k. The possible electronic states are given by the solutions of
the time-independent Schrödinger equation

H(k) |ψn,k〉= εn,k |ψn,k〉 . (1)

These so-called Bloch states |ψn,k〉 are a superposition of plane waves with wave-
vector k. As such, they can be written as

|ψn,k〉= eik·r |un,k〉 , (2)

where |un,k〉 is cell-periodic. This property is known as the Bloch theorem [5]. The
energy eigenvalues εn,k are called energy bands, with n being their band index.

The bulk properties of materials are determined largely by their band structure.
For example, a material is insulating if there is an energy gap between the eigen-
states which are occupied by electrons, and those that are empty, as shown in Fig-
ure 1(a). Conversely, a material is conducting if there is no such energy gap, such as
when an energy band is only occupied for certain values of k.

It turns out however that characterizing materials by their bandstructure does not
fully capture their physical properties. Instead, taking into account the shape of the
Bloch states |ψn,k〉 leads to a topological classification of materials.

1.1.2 Topological properties

To motivate the concept of topological classification, we first show an example from
its mathematical origins in geometry: Closed, orientable two-dimensional surfaces
can be classified by their number of holes, called genus. A sphere for example has no
holes, while a torus has exactly one (see Fig. 2). This property is conserved under
smooth deformations of the surface. The only way to add or remove a hole is by
tearing and gluing the surface. The genus is an example for a topological invariant –
a quantized property that cannot be changed without changing the topological phase.
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Fig. 1 (a) Bandstructure of an insulating material. Occupied (blue) and unoccupied (orange) states
are separated by an energy gap for all k. (b) Bandstructure of a conducting material. Occupied and
unoccupied states touch, and some bands are partially occupied.

For this reason, topological invariants are commonly used to identify topological
phases.

(b)(a)

Fig. 2 Examples of closed orientable surfaces: (a) A sphere has no holes (b) A torus has one hole

In order to define topological phases for materials, we need a geometric object
on which the topological properties can be defined. For this purpose, we pick a set
of bands B. A very common choice for B is to pick the occupied subspace1. The set
of states {|un,k〉}n∈B span a vector space Vk (over C) for each k. If Vk is a smooth
function of k and the space where k itself is defined is a manifold, this defines a
so-called fiber bundle.

A simple geometrical example of a fiber bundle is given by a one-dimensional
vector space defined on a circle. If the vector space is orthogonal to the plane de-

1 This is not always possible, for example in the case of semimetals where the occupation number
changes with k. In these cases, one often picks the N lowest energy bands instead.
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scribed by the circle, the resulting object is a cylinder, as shown in Figure 3 (a). If
however the basis vector rotates by π as it goes around the circle, the resulting ob-
ject is a Möbius strip. These two objects cannot be smoothly transformed into each
other, making them topologically distinct.

(b)(a)

Fig. 3 (a) A cylinder, spanned by a vector which does not rotate as it goes around a circle. (b) A
Möbius strip, spanned by a vector which rotates by π as it goes around a circle.

1.1.3 Bulk-edge correspondence

In the previous section, the fact that the vector space Vk needs to be a smooth func-
tion of k was mentioned. This has a profound impact on the physical properties of
topological states, as we shall now see.

Even though the Hamiltonian H(k) is a smooth function of k, the same is not
necessarily true for Vk. Consider the following one-dimensional example:

H(k) =−cos(k) |a〉〈a|+ cos(k) |b〉〈b| , (3)

where |a〉 and |b〉 are two arbitrary orthogonal states. For k = 0, the energy eigen-
values of |a〉 and |b〉 are −1 and 1, respectively. Consequently, |a〉 has band index
1 while |b〉 has index 2. As k changes, the energy eigenvalues shift until they are
equal at k = π/2. At this point, the vector space Vk = span

(
{|un,k〉}n∈{1}

)
switches

discretely from being spanned by |a〉 to being spanned by |b〉. As a result, this space
does not meet the criteria for topological categorization.

The smoothness of the vector space Vk can be broken if the order of energy eigen-
values between the states which are in the set B and those which are not changes.
This can easily be avoided if we restrict our possible choice of bands B, such that
they are always separated from the other bands by a direct energy gap. In other
words, topological properties are defined for isolated sets of bands, which form
smooth fiber bundles.

Another way to frame this is by looking at the possible transformations that can
be done to a material without changing its topological properties. In addition to
requiring that these transformations smoothly change the Hamiltonian, we impose
that the band gap remains open. This definition leads to a remarkable physical prop-
erty of topological phases: At the boundaries of topologically non-trivial insulating
materials, stable conducting edge states must form. In going from the bulk of the
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topological material to vacuum, the system undergoes a smooth transition from a
non-trivial to a trivial (vacuum) state. To allow for this, the aforementioned condi-
tion that the bands are separated in energy must be broken. This effect is known as
the bulk-boundary correspondence, and variations of this effect govern the interest-
ing transport phenomena to be found in many topological materials [10, 13, 12].

1.2 Defining the Chern number

In the previous section, we have seen how topological properties in crystalline ma-
terials are defined on a conceptual level. Now, we will show an example for a topo-
logical invariant, which can be used to classify many topological phases in matter.

1.2.1 The Berry phase and Chern invariant

The basis for defining a topological invariant for electronic bands is the notion of a
geometric phase. To illustrate this phase, imagine a closed loop C on a manifold. As
an example, we choose a closed loop on a sphere, as shown in Figure 4(a). Adding
the plane tangential to the sphere at each point gives us a fiber bundle (see Fig. 4(b)).

(b)(a)
Vk k

C

Fig. 4 (a) A closed path C on the surface of a sphere. (b) The tangential vector space Vk for a given
point k on a sphere.

Now we choose a vector in the tangential space, and move it along C in such a
way that it remains locally parallel to itself, as shown in Figure 5. This process is
called parallel transport. We observe that the vector is rotated by some angle φ as
it traverses the path C. Since this angle depends only on the geometry of the fiber
bundle, it is called a geometric phase.
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ϕ

Fig. 5 Parallel transport of a vector on a closed path on a sphere rotates the vector by an angle φ .

For electronic bands, such a phase, known as Berry’s phase2, can be written as
[34]

γC = i
∮

C
∑
n∈B
〈un,k|∇k |un,k〉 .dk, (4)

where C is a closed loop in reciprocal space. Unlike the example above, the Berry’s
phase represents a rotation in the complex phase of a vector, not its real-space di-
rection.3 It is Gauge-invariant up to multiples of 2π [34]. By defining the Berry
potential

A (k) = i ∑
n∈B
〈un,k|∇k |un,k〉 , (5)

the Berry phase can be re-written as

γC =
∮

C
A (k).dk. (6)

Note that unlike the Berry phase, the Berry potential is not a Gauge-invariant quan-
tity. If the Berry potential is a smooth function of k (an important prerequisite, as we
shall see soon), we can use Stokes’ theorem to rewrite the Berry phase as a surface
integral

γC =
∫

S
∇k∧A (k).dk, (7)

where C = ∂S. Introducing the Berry connection

F = ∇k∧A (k), (8)

which is again Gauge-invariant, we can write this as

2 For simplicity, we consider the total Berry phase of all bands. The Berry phase can also be defined
for a single band, in which case the sum over bands is dropped.
3 To see this, try calculating the Berry phase for |uk〉= eik/2

(
cos(k)
sin(k)

)
, for k ∈ [0,2π].
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γC =
∫

S
F (k).dS. (9)

For a closed, orientable two-dimensional surface S in reciprocal space, we can
now define the Chern invariant as [6, 30]

C =
1

2π

∫
S
F (k).dS. (10)

Since the edge of a closed surface is a trivial path, equation 6 seems to suggest that
the Chern number is always zero. However, we must now remember that equations 7
and 9 are valid only if the Berry potential A (k) is smooth. Previously, we discussed
that Vk spanned by |un,k〉 must be a smooth function of k if we wish to define a
topological classification. However, there can still be a winding in the phase of |un,k〉
which makes the Berry potential non-smooth. As a result, the Chern number can take
any integer value. In fact, the presence of a non-zero Chern number can be viewed
as a topological obstruction to finding a globally smooth Gauge [29, 28].

1.2.2 The Chern number as change in Berry phase

Having defined the Chern number in terms of the cell-periodic states |un,k〉, we will
now show an alternative form that is easier to calculate numerically and is used
within the Z2Pack code [9]. For simplicity, we will look at the example where S is
the Brillouin zone k∈ [0,1)2 of a two-dimensional material, in reduced coordinates.
The results are equally applicable to other closed two-dimensional surfaces.

We divide the surface integral (eq. 10) for the Chern number into small segments
Si, as shown in Fig. 6(a). The segments should be small enough that

(b)(a)

ky

kx
0
0

1

1

S

pi pi+1

ky

kx
0
0

1

1

S

Si

Fig. 6 (a) The surface S is divided into segments Si. For each segment, the flux of Berry connection
can be calculated from the Berry phase around its boundary. (b) The top and bottom paths of each
boundary cancel, leaving paths pi which cross the Brillouin zone at a constant kx.
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Ci
part. =

1
2π

∫
Si

F (k).dS (11)

is much smaller than one. The Chern number is then given as the sum of all segment
integrals,

C = ∑
i

Ci
part. (12)

Since A (k) can be made to be locally smooth [26, 33], we can use Stokes’ theorem
to obtain

Ci
part. mod 1 =

1
2π

∫
∂Si

A (k).dk mod 1 =
γ∂Si

2π
mod 1, (13)

where the modulus comes from the fact that the Berry phase is defined only mod-
ulo 2π . Since we imposed that Ci

part. must be much smaller than one, we can still
uniquely determine its value from γ∂Si/2π by adding an integer that minimizes the
absolute value. Since the top and bottom parts of ∂Si cancel out due to periodicity,
we can write the Berry phase as

γ∂Si = γpi+1 − γpi , (14)

where pi and pi+1 are the paths at either side of the segment Si, as shown in Fig. 6(b).
The Berry phase can also be understood as a function of kx, since each path pi is
given by a fixed kx. Because both γ and kx are periodic, the Berry phase describes
a line on a torus, as shown in Fig. 7. The winding number of this line around the
torus is exactly the Chern number [22]. In other words, the Chern number can be

(b)(a)

γ

kx
0
0

2π

1

Fig. 7 (a) The Berry phase γ as a function kx for an example system with C = 1. (b) Because both
kx and γ are periodic, the Chern number can be seen as the winding number of the Berry phase
around a torus.

calculated by continuously tracking the Berry phase on lines of constant kx as it goes
across the Brillouin zone. In practice, enforcing this continuity is a difficult task, and
is the goal of the convergence options discussed in section 2.4.
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1.2.3 Wilson loop and hybrid Wannier charge centers

The problem of calculating the Chern number is now reduced to calculating the
Berry phase for closed loops in the Brillouin zone. This can be done by calculating
the so-called Wilson loop [3] W (C). The Wilson loop can be understood as a matrix
that maps the states at a starting point k0 along the loop onto their images after
parallel transport along C. For a discretization {k0, ...,kn−1,kn = k0} of the path C,
the Wilson loop can be approximated as [3, 9]

W (C) = Mk0,k1 · ... ·Mkn−1,kn , (15)

where
M

ki,k j
m,n =

〈
um,ki

∣∣un,k j

〉
(16)

are the overlap matrices between Bloch functions at different k. The eigenvalues λi
of the Wilson loop are connected to the total Berry phase by [15]

γC = ∑
i

argλi. (17)

This reflects the fact that each λi is the rotation angle that is acquired by an eigen-
state of the Wilson loop as it traverses the path C. Since the overlap matrices M can
be readily computed, this gives a method for calculating the Chern number numeri-
cally. Of course, the convergence of the Wilson loop eigenvalues with respect to the
discretization of C needs to be accounted for, which will be discussed in section 2.4.

Another, equivalent, approach to calculating the Berry phase is by computing so-
called hybrid Wannier charge centers [25, 24]. This method is based on the notion
of Wannier orbitals, which are given by Fourier transforming the Bloch states:

|Rn〉= V
(2π)d

∫
BZ

e−ik.R |ψn,k〉dk, (18)

where d is the dimensionality of the system, and V is the unit cell volume. The re-
sulting orbitals are localized, in contrast to the extended nature of the Bloch waves.
Since the Bloch states that are used to construct Wannier orbitals can be changed by
a Gauge transformation, the same is true for the Wannier orbitals. Their properties,
in particular the localization and position in real space, depend sensitively on this
choice of Gauge[16]. For the purposes of computing topological invariants, we in-
troduce hybrid Wannier orbitals [21, 25], which are Fourier transformed only in one
spatial direction and remain extended in the others:

∣∣Rx,ky,kz;n
〉
=

ax

2π

∫
π/ax

−π/ax

e−ikxRx |ψn,k〉 . (19)

The average position of such an orbital can be thought of as a function of the re-
maining reciprocal space variables:

x̄n(ky,kz) =
〈
0,ky,kz;n

∣∣ x̂ ∣∣0,ky,kz;n
〉
. (20)
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This quantity, known as the hybrid Wannier charge center (HWCC) is directly re-
lated to the Berry phase:

γC =
2π

a ∑
n

x̄n, (21)

where C is the path along which the hybrid Wannier orbitals were Fourier trans-
formed. Moreover, if the Gauge is chosen such that these hybrid Wannier orbitals
are maximally localized, the individual HWCC correspond to the eigenvalues of the
Wilson loop [9]

x̄i =
2π

a
arg(λi), (22)

up to possible reordering.
This equivalence between hybrid Wannier charge centers and the Berry phase

gives rise to a physical interpretation of the Chern number C. As the momentum
(kx, in the case of Fig. 7) is varied across the Brillouin zone, the average position of
the electrons in the orthogonal direction can change. Due to the periodicity of kx, it
must come back to the same position within the unit cell, but it can change into a
different unit cell. This represents a charge pumping process, where each cycle of
kx moves the charge by C unit cells.

2 The Z2Pack code

Having defined the Chern number and how it can be calculated in theory, we will
now see how this knowledge can be applied in practice. First, we will give a brief
overview of the Z2Pack code, introducing the necessary components for calculating
Chern numbers. Next, we will show two examples, the Haldane model of a Chern
insulator and the Weyl semimetal. Finally we conclude this section with a discussion
of the convergence options available in Z2Pack.

2.1 Introduction to the code

Z2Pack is a Python [31] library which provides functionality for computing topo-
logical invariants. A basic knowledge of the Python language is required for using
the code. For this, the reader is referred to the many excellent Python tutorials avail-
able on-line, in particular the official Python tutorial [1]. In the following, we will
give a short introduction to using Z2Pack. For a more detailed description of the
classes and functions described here, the reader may wish to consult the on-line
documentation at www.z2pack.ethz.ch/doc.

In order to calculate the Chern number with Z2Pack, two inputs are needed: A
description of the material (system), and a parametrization of the surface on which
the invariant should be calculated. These inputs are passed to a function which cal-
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culates the hybrid Wannier charge center evolution across the surface. Optionally,
this function can regularly save its progress to a file, to allow restarting aborted
calculations. The result of this calculation can then be used to evaluate the Chern
number or other topological invariants, and create plots. Figure 8 shows an overview
of this process, and the modules involved in each step. We will now describe these
steps in a bit more detail, and show some example code.

(b)

(a)

System 
- Hamiltonian matrix 
- tight-binding 
- first-principles 

Surface calculation 

Surface function 

Saving to / 
Loading from file 

Plotting Invariants 

Result 

Surface function 

z2pack.hm 
z2pack.tb 
z2pack.fp 

z2pack.surface 

z2pack.io 

z2pack.plot z2pack.invariant 

Result 

Fig. 8 (a) Overview of the process for calculating topological invariants for a reciprocal space
surface of a given material. (b) Python modules corresponding to each of the steps in calculating
topological invariants.

The system for which topological invariants are to be calculated can be given in
three different ways: First, it can be defined as an explicit function H(k) describing
the Hamiltonian matrix. This is useful for theoretical models, or when using the
k.p approximation. Listing 1 shows how such a system can be created using the
z2pack.hm.System class. The first, required, input is a function that takes k
and returns the corresponding matrix H(k). An optional keyword argument bands
can be passed to the class, to describe which band indices the topological invariant
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should be calculated for. It can be given either as an integer N, such that the lowest
N bands will be taken into account, or as an explicit list of band indices. As is
customary in Python, the lowest band has index 0. By default, the lower half of all
bands are taken into account.

1 import z2pack
2

3 def h a m i l t o n ( k ) :
4 . . .
5 # return Hamiltonian matrix f o r k
6

7 sys tem = z2pack . hm . System ( h a m i l t o n )
8

9 # Choose which bands are taken i n t o account
10 # by s p e c i f y i n g the ’ bands ’ keyword
11

12 # l o w e s t 2 bands
13 sys tem = z2pack . hm . System ( hami l t on , bands =2)
14

15 # f i r s t and t h i r d band
16 sys tem = z2pack . hm . System ( hami l t on , bands = [0 , 2 ] )

Listing 1 Example code for creating a System class defined with an explicit Hamiltonian matrix.

Second, the system can be given as a tight-binding model. For this, the TBmodels
package is used,4 which allows for defining tight-binding models either manually or
from the output of the Wannier90 [17, 18] code. This is shown in listing 2. For more
details about how to construct the tight-binding model, we refer to the TBmodels
documentation: www.z2pack.ethz.ch/tbmodels.

1 import t b m o de l s
2

3 # Create t i g h t−binding model
4 model = t bm o d e l s . Model ( . . . )
5

6 # Example : Model from Wannier90 output f i l e
7 model = t bm o d e l s . Model . f r o m h r f i l e ( ’ w a n n i e r 9 0 h r . d a t ’ )
8

9 sys tem = z2pack . t b . System ( model )

Listing 2 Creating a tight-binding system by using the tbmodels.Model class.

Finally, the system can be given as a first-principles calculation. As we have seen in
section 1.2.3, the overlap matrices Mki,k j between states at different k-points along a
path are needed to calculate the hybrid Wannier charge centers. Z2Pack makes use of
the fact that the Wannier90 code [17, 18] also requires these as an input. As a result,
Z2Pack is in principle compatible with all DFT codes which interface to Wannier90,
and the user needs to create the same input files as for running Wannier90. Since
Z2Pack needs to dynamically call the first-principles code for different k-points, a

4 TBmodels was initially developed as part of Z2Pack, but later separated because it can be used
outside of the scope of calculating topological invariants.
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function with which the k-point input can be created also needs to be supplied. For
some codes, this is implemented in the z2pack.fp.kpoint module. Listing 3
shows how a first-principles system is defined to be used with VASP [14].

1 sys tem = z2pack . fp . System (
2 i n p u t f i l e s =[
3 ’INCAR ’ , ’POSCAR ’ , ’POTCAR ’ , ’ wann ie r90 . win ’
4 ] ,
5 k p t f c t = z2pack . fp . k p o i n t . vasp ,
6 k p t p a t h = ’KPOINTS ’ ,
7 command= ’ mpirun $VASP >& l o g ’
8 )

Listing 3 Defining a first-principles system for use with the VASP code.

Apart from the system, the only other input required for running a calculation is
the surface on which the Chern number should be evaluated. This is simply given as
a function

f : [0,1]2 −→ Rd (23)
(s, t) 7−→ k

which parametrizes the surface. Listing 4 shows a simple example for a surface
function. It is important to note here that k should be given in reduced coordinates
k∈ [0,1)d . The reason for this is that it simplifies many things, for example checking
if the surface is a closed one.

1 # D e f i n i n g an e x p l i c i t f u n c t i o n
2 def s u r f a c e ( s , t ) :
3 re turn [ s , t , 0 ]
4

5 # Equiva lent e x p r e s s i o n us ing a lambda
6 s u r f a c e = lambda s , t : [ s , t , 0 ]

Listing 4 Two ways of defining a simple surface across the BZ at kz = 0.

Given a system and surface, the hybrid Wannier charge centers can be calculated
by calling the z2pack.surface.run function (see listing 5). The return value
of this function can then be passed to the z2pack.invariant.chern function
to evaluate the Chern number. A simple plot of the sum of HWCC can be created
by passing the result to the z2pack.plot.chern function. Since the plotting
functionality is based on the popular matplotlib [11] library, the appearance of the
plots can be fully customized using matplotlib commands.

1 r e s u l t = z2pack . s u r f a c e . run (
2 sys tem =system ,
3 s u r f a c e =lambda s , t : [ s , t , 0 ]
4 )
5

6 # Evaluate Chern number
7 z2pack . i n v a r i a n t . c h e r n ( r e s u l t )
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8

9 # P l o t sum of HWCC
10 f i g = z2pack . p l o t . c h e r n ( r e s u l t )
11 f i g . show ( )

Listing 5 Example code for calculating the hybrid Wannier charge centers, evaluating the Chern
number and creating a simple plot.

The result object created by the run method can be saved into a file using
the z2pack.io.save method (see listing 6). To retrieve the stored object, the
z2pack.io.load method can be used.

1 r e s u l t = . . .
2

3 # s av in g
4 z2pack . i o . s ave ( r e s u l t , ’ f i l e p a t h . j s o n ’ )
5

6 # l o a d i n g
7 r e s u l t = z2pack . i o . l o a d ( ’ f i l e p a t h . j s o n ’ )

Listing 6 Saving and loading Z2Pack results to a file.

Since the run calculation might take a while – especially for first-principles cal-
culations – it is sometimes necessary to restart from an unfinished calculation. For
this purpose, the save file keyword can be specified when calling run, which
means that the result will periodically be saved into the given file. If the load flag
is set to True, the code will check for an existing result in that file before starting
the calculation (see listing 7). One needs to be careful however not to load old re-
sults the system or surface has changed. Another way to restart calculations is by
explicitly passing a result, using the init result keyword.

1 # R e s t a r t from f i l e
2 r e s u l t = z2pack . s u r f a c e . run (
3 sys tem =system ,
4 s u r f a c e = s u r f a c e ,
5 s a v e f i l e = ’ f i l e p a t h . j s o n ’ ,
6 l o a d =True
7 )
8

9 # R e s t a r t from r e s u l t
10 r e s u l t 2 = z2pack . s u r f a c e . run (
11 sys tem =system ,
12 s u r f a c e = s u r f a c e ,
13 i n i t r e s u l t = r e s u l t
14 )

Listing 7 The run method can be restarted either from a result saved in a file, or by explicitly
passing a result.

Finally, during the run call, Z2Pack continuously writes information about the
current status to the console. Depending on the use case, this might be an unwanted
distraction. Since Z2Pack uses the Python standard module logging for this pur-
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pose, its verbosity can easily be changed by setting the so-called level of the mes-
sages that will be printed, as shown in listing 8. The log level describes the severity
of a given message. In Z2Pack, the two levels logging.INFO (for general mes-
sages) and logging.WARNING (for convergence issues) are used. Only messages
which are at least as severe as the current level will be shown.

1 import l o g g i n g
2

3 # Only show messages with at l e a s t ’WARNING’ l e v e l importance
4 l o g g i n g . g e t L o g g e r ( ’ z2pack ’ ) . s e t L e v e l ( l o g g i n g .WARNING)

Listing 8 By setting the log level, the messages printed by Z2Pack can be filtered by severity.

2.2 The Haldane model 5

The Haldane model [10] is a simple theoretical model for a Chern insulator. It de-
scribes two interleaved sub-lattices forming a honeycomb lattice, as shown in fig-
ure 9. The two sub-lattices have opposite on-site energies ±M. Nearest- and next-
nearest-neighbor hopping terms are included with strength t1 and t2, respectively. In
order to break time-reversal symmetry, a microscopic magnetic field is introduced,
adding a phase φ to the next-nearest-neighbor hopping. The full Hamiltonian of the
system is given by

H(k) = 2t2 cosφ

(
∑

i
cos(k.bi)

)
I+ t1 ∑

i
[cos(k.ai)σ

x + sin(k.ai)σ
y] (24)

+

[
M−2t2

(
∑

i
sin(k.bi)

)]
σ

z,

where ai and bi are the vectors connecting nearest- and next-nearest-neighbors (solid
orange / dashed blue arrows in Fig. 9), respectively, and σ i are the Pauli matrices.

In this example, we will calculate the Chern number for the Haldane model for
a particular value of the parameters M, t1, t2, and φ . First, we define a function
describing the Hamiltonian, as a function of these parameters and k, as shown in
listing 9.

1 # Def ine the P a u l i m a t r i c e s
2 IDENTITY = np . i d e n t i t y ( 2 , d t y p e =complex )
3 PAULI X = np . a r r a y ( [ [ 0 , 1 ] , [ 1 , 0 ] ] , d t y p e =complex )
4 PAULI Y = np . a r r a y ( [ [ 0 , −1 j ] , [ 1 j , 0 ] ] , d t y p e =complex )
5 PAULI Z = np . a r r a y ( [ [ 1 , 0 ] , [ 0 , −1]] , d t y p e =complex )
6

7 # Def ine the f u n c t i o n H( k )

5 Figures and text in this section are partly copied from previous work of the authors [8].
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Fig. 9 A honeycomb lattice, with A and B sites marked with filled and empty circles, respectively.
The unit cell is marked with a dotted green line. Nearest neighbors are indicated with a solid orange
arrow, and next-nearest neighbors with a dashed blue arrow.

8 def Hamil ton ( k , m, t1 , t2 , p h i ) :
9 kx , ky = k

10 k a = 2 ∗ np . p i / 3 . ∗ np . a r r a y ( [
11 kx + ky , −2 ∗ kx + ky , kx − 2 ∗ ky
12 ] )
13 k b = 2 ∗ np . p i ∗ np . a r r a y ( [ kx , ky , ky − kx ] )
14 H = (
15 2 ∗ t 2 ∗ np . cos ( p h i ) ∗
16 sum ( [ np . cos ( v a l ) f o r v a l in k b ] ) ∗ IDENTITY
17 )
18 H += t 1 ∗ sum ( [ np . cos ( v a l ) f o r v a l in k a ] ) ∗ PAULI X
19 H += t 1 ∗ sum ( [ np . s i n ( v a l ) f o r v a l in k a ] ) ∗ PAULI Y
20 H += m ∗ PAULI Z
21 H −= (
22 2 ∗ t 2 ∗ np . s i n ( p h i ) ∗
23 sum ( [ np . s i n ( v a l ) f o r v a l in k b ] ) ∗ PAULI Z
24 )
25 re turn H

Listing 9 Defining a function that describes the Haldane Hamiltonian.

Next, we set some constants for the parameters M, t1, t2, φ , and create a Z2Pack
system from the Hamiltonian function as shown in listing 10. We will take into
account only the lower (occupied) band. Because the Hamilton function only
takes a two-dimensional k, we specify the dimension using the dim keyword.We
can then run a surface calculation for this system.

1 # Set the c o n s t a n t s f o r the Haldane model
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2 M = 0 . 1
3 T1 = 1 .
4 T2 = 0 . 2
5 PHI = 0 . 5 ∗ np . p i
6

7 # Create a Z2Pack system
8 sys tem = z2pack . hm . System (
9 lambda k : Hami l ton ( k , m=M, t 1 =T1 , t 2 =T2 , p h i =PHI ) ,

10 bands =1 ,
11 dim=2
12 )
13 # Run the s u r f a c e c a l c u l a t i o n
14 r e s u l t = z2pack . s u r f a c e . run (
15 sys tem =system ,
16 s u r f a c e =lambda s , t : [ t , s ]
17 )

Listing 10 Defining a system and running the surface calculation for specific values of the Haldane
parameters.

Finally, we evaluate the Chern number, and create a figure that shows the HWCC
evolution, as shown in listing 11. This produces the image shown in figure 10. The
complete Haldane model example can be seen in listing 12.

1 # Evaluate the Chern number
2 p r i n t ( ’ Chern number : ’ , z2pack . i n v a r i a n t . c h e r n ( r e s u l t ) )
3

4 # Create a f i g u r e
5 f i g , ax = p l t . s u b p l o t s ( f i g s i z e = [ 4 , 3 ] )
6 z2pack . p l o t . c h e r n ( r e s u l t , a x i s =ax )
7 ax . s e t x l a b e l ( r ’ $k y$ ’ )
8 ax . s e t y l a b e l (
9 r ’ $\ sum i \ ,\ b a r {x} i $ ’ , r o t a t i o n = ’ h o r i z o n t a l ’ , ha= ’ r i g h t ’

10 )
11 ax . s e t x t i c k s ( [ 0 , 1 ] )
12 ax . s e t y t i c k s ( [ 0 , 1 ] )
13 f i g . s a v e f i g ( ’ h a l d a n e . pdf ’ , b b o x i n c h e s = ’ t i g h t ’ )

Listing 11 Evaluating the Chern number and creating a plot from the calculation result.

1 import l o g g i n g
2

3 import z2pack
4 import numpy as np
5 import m a t p l o t l i b . p y p l o t a s p l t
6

7 l o g g i n g . g e t L o g g e r ( ’ z2pack ’ ) . s e t L e v e l ( l o g g i n g .WARNING)
8

9 # Def ine the P a u l i m a t r i c e s
10 IDENTITY = np . i d e n t i t y ( 2 , d t y p e =complex )
11 PAULI X = np . a r r a y ( [ [ 0 , 1 ] , [ 1 , 0 ] ] , d t y p e =complex )
12 PAULI Y = np . a r r a y ( [ [ 0 , −1 j ] , [ 1 j , 0 ] ] , d t y p e =complex )
13 PAULI Z = np . a r r a y ( [ [ 1 , 0 ] , [ 0 , −1]] , d t y p e =complex )
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Fig. 10 The sum of HWCC as a function of kx for the Haldane model with M = 0.1, t1 = 1, t2 = 0.2,
and φ = π/2. Since the HWCC wind around the torus once in positive direction, the Chern number
is C = 1.

14

15 # Def ine the f u n c t i o n H( k )
16 def Hamil ton ( k , m, t1 , t2 , p h i ) :
17 kx , ky = k
18 k a = 2 ∗ np . p i / 3 . ∗ np . a r r a y ( [
19 kx + ky , −2 ∗ kx + ky , kx − 2 ∗ ky
20 ] )
21 k b = 2 ∗ np . p i ∗ np . a r r a y ( [ kx , ky , ky − kx ] )
22 H = (
23 2 ∗ t 2 ∗ np . cos ( p h i ) ∗
24 sum ( [ np . cos ( v a l ) f o r v a l in k b ] ) ∗ IDENTITY
25 )
26 H += t 1 ∗ sum ( [ np . cos ( v a l ) f o r v a l in k a ] ) ∗ PAULI X
27 H += t 1 ∗ sum ( [ np . s i n ( v a l ) f o r v a l in k a ] ) ∗ PAULI Y
28 H += m ∗ PAULI Z
29 H −= (
30 2 ∗ t 2 ∗ np . s i n ( p h i ) ∗
31 sum ( [ np . s i n ( v a l ) f o r v a l in k b ] ) ∗ PAULI Z
32 )
33 re turn H
34

35 # Set the c o n s t a n t s f o r the Haldane model
36 M = 0 . 1
37 T1 = 1 .
38 T2 = 0 . 2
39 PHI = 0 . 5 ∗ np . p i
40

41 # Create a Z2Pack system
42 sys tem = z2pack . hm . System (
43 lambda k : Hami l ton ( k , m=M, t 1 =T1 , t 2 =T2 , p h i =PHI ) ,
44 bands =1 ,
45 dim=2
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46 )
47 # Run the s u r f a c e c a l c u l a t i o n
48 r e s u l t = z2pack . s u r f a c e . run (
49 sys tem =system ,
50 s u r f a c e =lambda s , t : [ t , s ]
51 )
52

53 # Evaluate the Chern number
54 p r i n t ( ’ Chern number : ’ , z2pack . i n v a r i a n t . c h e r n ( r e s u l t ) )
55

56 # Create a f i g u r e
57 f i g , ax = p l t . s u b p l o t s ( f i g s i z e = [ 4 , 3 ] )
58 z2pack . p l o t . c h e r n ( r e s u l t , a x i s =ax )
59 ax . s e t x l a b e l ( r ’ $k y$ ’ )
60 ax . s e t y l a b e l (
61 r ’ $\ sum i \ ,\ b a r {x} i $ ’ , r o t a t i o n = ’ h o r i z o n t a l ’ , ha= ’ r i g h t ’
62 )
63 ax . s e t x t i c k s ( [ 0 , 1 ] )
64 ax . s e t y t i c k s ( [ 0 , 1 ] )
65 f i g . s a v e f i g ( ’ h a l d a n e . pdf ’ , b b o x i n c h e s = ’ t i g h t ’ )

Listing 12 The complete Haldane model example.

2.3 Identifying Weyl semimetals

So far, we have considered the Chern number in the context of insulating materials.
From the discussion in section 1.1.3, we know that a Chern number can be defined
on any closed two-dimensional surface in the Brillouin zone where the bands are
gapped. However, in three-dimensional materials the band gap can still close out-
side of that specific surface. This can be used to classify topological semimetals, in
particular to identify so-called Weyl nodes.

Weyl nodes are linear touching points of two bands in a single point. Their Hamil-
tonian can locally be described as [20]

H(k) = ∑
i∈{x,y,z}

j∈{0,x,y,z}

Ai, j ki σ
j, (25)

where σ j are the Pauli matrices, and Ai, j characterizes the Weyl node. Topologically,
Weyl nodes are remarkable because they are a quantized source or sink of Berry
connection, depending on their chirality [32]. Since the Chern number measures the
flux of Berry connection through a surface, we can determine the chirality of a Weyl
node by calculating the Chern number on a sphere enclosing it [23, 9].

Listing 13 shows how the Chern number can be calculated for a simple symmetric
Weyl node H(k) = ∑i kiσ

i. The techniques used are the same as for the Haldane
example. For defining the surface – a sphere of radius r = 0.01 – Z2Pack provides
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a helper function z2pack.shape.Sphere, with which a sphere can be defined
through its center and radius. The plot created in this example is shown in figure 11.

1 import numpy as np
2 import m a t p l o t l i b . p y p l o t a s p l t
3

4 import z2pack
5

6 # Def ine P a u l i v e c t o r
7 PAULI X = np . a r r a y ( [ [ 0 , 1 ] , [ 1 , 0 ] ] , d t y p e =complex )
8 PAULI Y = np . a r r a y ( [ [ 0 , −1 j ] , [ 1 j , 0 ] ] , d t y p e =complex )
9 PAULI Z = np . a r r a y ( [ [ 1 , 0 ] , [ 0 , −1]] , d t y p e =complex )

10 PAULI VECTOR = l i s t ( [ PAULI X , PAULI Y , PAULI Z ] )
11

12 def Hamil ton ( k ) :
13 ””” s imple 2−band hami l ton ian k . sigma with a Weyl p o i n t a t k=0”””
14 r e s = np . z e r o s ( ( 2 , 2 ) , d t y p e =complex )
15 f o r kva l , p mat in z i p ( k , PAULI VECTOR ) :
16 r e s += k v a l ∗ p mat
17 re turn r e s
18

19 # Create the System
20 sys tem = z2pack . hm . System ( Hami l ton )
21

22 # the s u r f a c e i s a sphere around the Weyl p o i n t
23 r e s u l t = z2pack . s u r f a c e . run (
24 sys tem =system ,
25 s u r f a c e = z2pack . shape . Sphere ( [ 0 . , 0 . , 0 . ] , 0 . 0 1 )
26 )
27 p r i n t ( ’ Chern number : ’ , z2pack . i n v a r i a n t . c h e r n ( r e s u l t ) )
28

29 # Create p l o t
30 f i g , ax = p l t . s u b p l o t s ( f i g s i z e = [ 4 , 3 ] )
31 z2pack . p l o t . c h e r n ( r e s u l t , a x i s =ax )
32

33 ax . s e t x l a b e l ( r ’ $\ t h e t a $ ’ )
34 ax . s e t x t i c k s ( [ 0 , 1 ] )
35 ax . s e t x t i c k l a b e l s ( [ r ’ $0$ ’ , r ’ $\ p i $ ’ ] )
36 ax . s e t y l a b e l ( r ’ $\ b a r {\ p h i }$ ’ , r o t a t i o n = ’ h o r i z o n t a l ’ )
37 ax . s e t y t i c k s ( [ 0 , 1 ] )
38 ax . s e t y t i c k l a b e l s ( [ r ’ $0$ ’ , r ’ $2\ p i $ ’ ] )
39 ax . s e t t i t l e ( r ’ $\vec{k } .\ vec{\ s igma}$ ’ )
40 p l t . s a v e f i g ( ’ weyl . pdf ’ , b b o x i n c h e s = ’ t i g h t ’ )

Listing 13 Calculating the Chern number for a simple k.p model of a Weyl node.

2.4 Convergence options

In the previous examples, we have used the surface.run function without spec-
ifying any convergence options. This means that we relied on the default values
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0
0

2
k.

Fig. 11 The HWCC on loops around a sphere enclosing a Weyl node, as a function of the altitude
angle θ .

defined in Z2Pack. While these should work for a wide range of potential applica-
tions, it is still important to understand the convergence mechanisms and how they
can be tuned.

First, we should note that for the convergence criteria described here, the indi-
vidual hybrid Wannier charge centers are taken into account, not only their sum.
Figure 12 shows a typical evolution of HWCC x̄i evaluated at discrete values of ky.
Note that the HWCC are not connected across different ky, since it is not possible to
uniquely identify them.

0 0.5
ky

0

1

xi

Fig. 12 Hybrid Wannier charge center evolution along half of the kz = 0 plane for Bismuth.
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The first convergence option defined in Z2Pack is convergence with respect to the
discretization along the line for which the HWCC are calculated. In rough terms, the
number of k-points along the line is increased until the change in HWCC positions
is less than a certain threshold, pos tol. How many k-points are used in each step
is defined by the iterator keyword. This input can be any iterable object (for
example a list) of integers. By default, it is set to range(8, 27, 2), meaning
that the code will start with eight k-points, and then increase in steps of two until
26. If convergence is still not reached after this point, a warning will be generated.
In this case, the best course of action is usually to increase the maximum number of
k-points and restart the calculation from the previous result.

One detail that might be worth noting is how the movement of HWCC is calcu-
lated. Since, as mentioned above, the HWCC cannot be uniquely identified, we can
not simply calculate the movement for each charge center individually. Because a
HWCC can cross from 1 to 0 or vice versa, indexing them by their position from
zero also does not work. Instead, the HWCC are indexed starting from the largest
gap6 between any two HWCC (when considering both the old and new charge cen-
ters), as shown in Figure 13. The positions of HWCC with the same index are then
compared, and the maximum of these differences is computed.

old new combined

largest gap

1
2

3

4

5
6

1
2

3

4

5
6

Fig. 13 For comparing their positions, HWCC are indexed starting from the largest gap between
any two charge centers.

In addition to convergence along a single k-point line, convergence in the orthog-
onal direction needs to be taken into account. This corresponds to the discretiza-
tion shown in section 1.2.2. Using the same technique as before, the movement of
HWCC between two neighboring lines is calculated. If it is larger the threshold
value move tol, an additional line is added between the two neighbors. To avoid
calculations running indefinitely, which could occur if there is a discontinuity in the
HWCC spectrum due to a band gap closure, a minimum allowed distance between
neighboring lines min neighbor dist is defined. Again, a warning is issued

6 Note that this gap in the HWCC spectrum is not related to the band gap of the energy spectrum.
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if convergence cannot be reached. It is important to note that, due to the way the
movement is calculated, two HWCC that exactly exchange places cannot be de-
tected. This can happen in cases where the band gap becomes very small at some
point in the Brillouin zone, and the character of the bands changes very rapidly.
For such systems, it is important to increase the initial number of lines through the
num lines keyword.

Finally, Z2Pack also monitors the distance between the middle of largest gap in
each line, and the HWCC positions in neighboring lines (see Fig. 14). If the distance
is smaller than gap tol times the size of the largest gap, an additional line is
again placed between the two neighboring lines. The reason for this additional test
should become obvious in the next section, as it is related to how the Z2 invariant is
calculated. Scaling the tolerance with the size of the largest gap is necessary in this
case because otherwise the condition can be impossible to fulfill, especially when
there are many evenly-spaced HWCC.

Fig. 14 The minimum distance between the middle of the largest gap (orange diamond) and
HWCC (blue circle) in neighboring lines determines whether the gap tol criterion is met.

3 Time-reversal symmetry: Z2 classification 7

In the previous sections, we have seen how an isolated set of bands can be classified
topologically according to their Chern number. Now, we will show how this classi-
fication can be enriched in the presence of symmetries. In particular, we will show
that time-reversal invariant materials can be classified according to a Z2 index. After
a theoretical introduction, we describe how the Z2 index is computed with Z2Pack.
Finally, the example of a tight-binding model in the non-trivial Z2 phase is shown.

7 Figures and text in this section were partly copied from previous work of the authors [8, 9]



24 Dominik Gresch and Alexey Soluyanov

3.1 Individual Chern numbers

In section 1.1.2, we have seen that topological phases can be defined on manifolds in
reciprocal space, if we choose a set of Bloch functions {|un,k〉} such that they span
a smooth vector space Vk. The most convenient way of achieving this smoothness,
which we have used so far, is by choosing an isolated set of bands. This leads to
a classification into topological states which can only be adiabatically changed by
closing the band gap, and are characterized by the Chern number. However, choos-
ing isolated bands is by no means the only possible way to create a smooth Vk. For
the Hamiltonian of eq. 3 for example, we could just pick state |a〉 everywhere.

Here, we aim to find a more complex topological classification by sub-dividing
the occupied states into smooth parts. In general, if the Hilbert space H of a given
problem can be written as a sum of smooth Hilbert spaces,

H =
⊕

i

Hi, (26)

then each of the Hilbert spaces has a well-defined Chern number Ci. These indi-
vidual Chern numbers [25] sum together to the Chern number of the full Hilbert
space:

C = ∑
i

Ci. (27)

However, in general these individual Chern numbers do not carry much meaning,
since the choice how to split up the Hilbert space is arbitrary. In the presence of a
symmetry S however, the Hilbert space can be split up according to the symmetry
eigenvalues. For example, consider a mirror symmetry with eigenvalues ±i. On the
mirror-symmetric surface, S and H(k) commute. Therefore, the Bloch functions
|un,k〉 can be separated into +i and −i eigenstates. Both eigenspaces have a well-
defined Chern number:

C =Ci +C−i. (28)

This gives rise to a symmetry-protected [27, 7, 2] topological classification. Mate-
rials can have a zero total Chern number, but non-zero individual Chern numbers.
Such a topological phase is protected as long as both the band gap remains open
and the symmetry is respected. If the symmetry is broken, a mixing of the two
eigenspaces can change the topological phase.

Time-reversal symmetry θ leads to a particularly interesting and well-known
topological classification. Unlike spatial symmetries, it is an anti-unitary symme-
try and squares to −1 in the spinful case. As a result, the Bloch functions come in
so-called Kramers pairs [13, 12]

θ
∣∣u I

m,k
〉
=
∣∣u II

m,k
〉

(29)

θ
∣∣u II

m,k
〉
= −

∣∣u I
m,k
〉
.

There is a Gauge in which these states are smooth [25, 33], and thus they have
well-defined, opposite [24] individual Chern numbers
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C I
m =−C II

m . (30)

Furthermore, the hybrid Wannier charge centers are related by [24]

x̄ I
m(ky) = x̄ II

m (−ky), (31)

meaning that they are degenerate for the time-reversal invariant lines ky = 0,π . In
order to define a topological invariant, we group the states by their pair indices I, II.
The two groups then have individual Chern numbers

C I =−C II . (32)

However, these Chern numbers are not Gauge invariant. This can be seen by chang-
ing the sign of one of the two states:∣∣ũ II

m
〉
=
∣∣u I

m
〉

(33)∣∣ũ I
m
〉
= −

∣∣u II
m
〉

These states still obey eq. 29, and the individual Chern number of each state remains
the same. Yet the two states have switched their pair indices. As a result, the Chern
number C I is changed by C II

m −C I
m = 2C II

m . Since this re-labeling of Kramers pairs
can only ever change the Chern numbers by an even number, a topological invariant
can be defined as

Z2 =C I
m mod 2. (34)

In practice, the states do not need to be split by their pair indices to calculate the
Z2 invariant. Instead, we can use the fact that the hybrid Wannier charge centers
must be doubly degenerate at the time-reversal invariant momenta. An arbitrary
line between zero and π (dotted green line in Fig. 15) will cross an even number
of HWCC in the topologically trivial case, and an odd number in the non-trivial
case [24]. This principle is used in Z2Pack to calculate the Z2 invariant.

When computing the Z2 invariant numerically, the challenge in using the ap-
proach described above is that we cannot uniquely identify hybrid Wannier charge
centers. In other words, we do not know how the HWCC connect between two dis-
crete values of ky. We can get around this issue however by cleverly choosing the
line xcut(ky) for which the number of crossings is counted. Since we want a cross-
ing to be as obvious as possible, we choose it to always be in the middle of the
largest gap between any two HWCC, as shown in figure 16. The number of cross-
ings is then counted by summing up the HWCC which lie between the current and
previous value of the largest gap.

The interface for calculating the Z2 invariant in Z2Pack is very similar to that
for calculating the Chern number. Given the result of a surface calculation, it can
be evaluated with the z2pack.invariant.z2 function. Note that the surface
which is used to calculate the HWCC should cover only half the Brillouin zone.
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Fig. 15 Hybrid Wannier charge centers for a two-band time-reversal invariant system. (a) Trivial
phase. The two bands each have a zero individual Chern number. (b) Non-trivial phase. The two
bands have individual Chern numbers ±1.
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Fig. 16 Sketch showing the Z2 calculation. (a) Continuous case. The HWCC (solid blue line)
are crossed exactly once by xcut (dashed orange line), at the green point. (b) Discrete case. The
HWCC (blue circles) and middle of the largest gap (orange diamonds) are known only for discrete
ky. Crossings are counted when the HWCC value lies between the largest gaps of the current and
previous lines (green circle).

3.2 Tight-binding example

For the final example in this chapter, we will consider a system of two inter-
penetrating square lattices A and B each carrying one electron per unit cell, as shown
in Fig. 17. Let us take into account nearest and next-nearest neighbor hopping terms,
with strength t1 and t2, respectively. Each lattice site has two possible states (spin
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up / down), both carrying equal on-site energies +1 for sub-lattice A, and −1 for
sub-lattice B.

Fig. 17 Two inter-penetrating square lattices. The unit cell is shown in green (dotted line). Solid
orange arrows connect nearest neighbors, and dashed blue arrows connect next-nearest neighbors.

Including only hopping terms between orbitals of the same spin direction, let the
nearest-neighbor hopping terms from sub-lattice A to B have phases {1, i,−i,−1}
(counter-clockwise) for the spin-up case, and its conjugate for the spin down case.
Next-nearest neighbor hopping terms do not carry a phase, but are positive for sub-
lattice A and negative for sub-lattice B. The resulting Hamiltonian is

H(kx,ky) = (1+2t2 [coskx + cosky])σz⊗σ0 (35)

−2t1

[
sin
(

kx + ky

2

)
σy⊗σ0 + sin

(
kx− ky

2

)
σx⊗σz

]
.

The tight-binding model is built using the TBmodels code, as shown in listing 14.
In the constructor of the tmodels.Model, the positions, on-site energies and oc-
cupation number are set. Then, the add hop method is used to add all hopping
terms. Note that the inverse hopping terms (e.g., nearest-neighbor hopping from
sub-lattice B to A) are added automatically. The surface calculation is performed
in exactly the same way as for the previous examples, except that the surface now
only covers half the Brillouin zone. Finally, the z2pack.plot.wcc method is
used to plot the HWCC, and z2pack.invariant.z2 is used to calculate the
Z2 invariant. The resulting plot can be seen in figure 18, showing the non-trivial Z2
phase.

1 import i t e r t o o l s
2

3 import z2pack
4 import t b m o de l s
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Fig. 18 Hybrid Wannier charge center evolution (black circles) and their largest gap (blue dia-
monds) for the system of two inter-penetrating square lattices, with t1 = 0.2 and t2 = 0.3.

5 import m a t p l o t l i b . p y p l o t a s p l t
6

7 T1 , T2 = ( 0 . 2 , 0 . 3 )
8

9 # Create a ” bare ” t i g h t−binding model , with only
10 # on−s i t e e n e r g i e s .
11 model = t bm o d e l s . Model (
12 o n s i t e = (1 , 1 , −1, −1) ,
13 pos = [ [ 0 . , 0 . ] , [ 0 . , 0 . ] , [ 0 . 5 , 0 . 5 ] , [ 0 . 5 , 0 . 5 ] ] ,
14 occ =2 ,
15 )
16

17 # Add n e a r e s t neighbor hopping terms
18 f o r phase , R in z i p (
19 [ 1 , 1 j , −1j , −1] ,
20 i t e r t o o l s . p r o d u c t ( [ 0 , −1] , [ 0 , −1])
21 ) :
22 model . add hop (
23 o v e r l a p = phase ∗ T1 ,
24 o r b i t a l 1 =0 ,
25 o r b i t a l 2 =2 ,
26 R=R
27 )
28 model . add hop (
29 o v e r l a p = phase . c o n j u g a t e ( ) ∗ T1 ,
30 o r b i t a l 1 =1 ,
31 o r b i t a l 2 =3 ,
32 R=R
33 )
34

35 # Add next−n e a r e s t neighbor hopping terms
36 f o r R in (
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37 ( r [ 0 ] , r [ 1 ] ) f o r r in i t e r t o o l s . p e r m u t a t i o n s ( [ 0 , 1 ] )
38 ) :
39 model . add hop ( T2 , 0 , 0 , R)
40 model . add hop ( T2 , 1 , 1 , R)
41 model . add hop (−T2 , 2 , 2 , R)
42 model . add hop (−T2 , 3 , 3 , R)
43

44 # Create System i n s t a n c e
45 t b s y s t e m = z2pack . t b . System ( model , dim =2)
46

47 # Run HWCC c a l c u l a t i o n
48 r e s u l t = z2pack . s u r f a c e . run (
49 sys tem = t b s y s t e m , s u r f a c e =lambda s , t : [ t , s / 2 . ]
50 )
51

52 # Create f i g u r e
53 f i g , ax = p l t . s u b p l o t s ( f i g s i z e = [ 4 , 3 ] )
54 z2pack . p l o t . wcc ( r e s u l t , a x i s =ax )
55 ax . s e t x l a b e l ( r ’ $k y$ ’ )
56 ax . s e t x t i c k s ( [ 0 , 1 ] )
57 ax . s e t x t i c k l a b e l s ( [ r ’ $0$ ’ , r ’ $\ p i $ ’ ] )
58 ax . s e t y l a b e l ( r ’ $\ b a r {x} i $ ’ , r o t a t i o n = ’ h o r i z o n t a l ’ )
59 ax . s e t y t i c k s ( [ 0 , 1 ] )
60 p l t . s a v e f i g ( ’ tb wcc . pdf ’ , b b o x i n c h e s = ’ t i g h t ’ )
61

62 # C a l c u l a t e Z2 i n v a r i a n t
63 p r i n t ( ”Z2 i n v a r i a n t : ” , z2pack . i n v a r i a n t . z2 ( r e s u l t ) )

Listing 14 Calculating the Z2 invariant for a tight-binding model of two inter-penetrating square
lattices.
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