
TMS 2016

Z2Pack

Hands-on session D. Gresch

Exercise 1. Chirality of an isotropic Weyl node

An isotropic Weyl node is described locally by the Hamiltonian

H(k) =
∑

i∈{x,y,z}

kiσi, (1)

where σi are the Pauli matrices. Depending on its chirality, the Weyl node is either a source or
sink of Berry curvature. Consequently, the chirality can be calculated by evaluating the Chern
number on a sphere surrounding the Weyl node.

The following skeleton code (ex1/weyl skeleton.py) contains a function which represents the
Hamiltonian from eq. (1).

(a) Create a z2pack.hm.System instance which represents this system.

(b) Run a calculation for a surface enclosing the Weyl point - which is located at k = (0, 0, 0)
- by a sphere of radius 0.1.

Hint: Try finding the documentation for the z2pack.shape submodule in the Z2Pack
reference.

(c) What is the Chern number associated with this surface?

(d) Create a plot which demonstrates the result of your calculation.

Listing 1: Skeleton code containing the function Hamilton(k)

#!/usr/bin/env python

-*- coding: utf -8 -*-

import numpy as np

defining pauli matrices

identity = np.identity(2, dtype=complex)

pauli_x = np.array ([[0, 1], [1, 0]], dtype=complex)

pauli_y = np.array ([[0, -1j], [1j, 0]], dtype=complex)

pauli_z = np.array ([[1, 0], [0, -1]], dtype=complex)

defining the Weyl Hamiltonian

def Hamilton(k):

kx , ky , kz = k

return kx * pauli_x + ky * pauli_y + kz * pauli_z

1

Exercise 2. Z2 invariant in a tight-binding model

We consider a two-dimensional system which consists of two inter-penetrating square lattices (see
fig. 1). Each lattice point hosts two orbitals, which have on-site energy +1 for one sub-lattice,
and −1 for the other. We consider two kinds of hopping:

• Nearest-neighbour hopping with strength t1, between the first / second orbital in one
sub-lattice and the same orbital in the other sub-lattice. Depending on the direction, the
hoppings acquire a phase factor.

• Next-nearest neighbour hopping with strength ±t2. The hopping is positive for the sub-
lattice with positive on-site energy, and negative for the other one.

In this exercise, the code for creating such a tight-binding model with tbmodels is given. We
study the Z2 invariant for the system (in the kz = 0 plane).

Figure 1: Sketch of a model with two square sublattices. The arrows indicate nearest-neighbour
(red) and next-nearest-neighbour (blue) interaction.

(a) Implement the run function such that it prints the Z2 invariant of the kz = 0 plane for
given parameters t1, t2. Evaluate this function for (t1, t2) = (0.1, 0.2) and (0.2, 0.3).

Hint: Remember that Wannier charge centers should be calculated only on half the Bril-
louin zone to calculate the Z2 invariant.

(b) Expand the function such that it also creates a plot showing the Wannier charge centers
and their largest gaps.

Listing 2: Skeleton code, containing a function which returns the tight-binding model for given
hopping strengths t1, t2.

#!/usr/bin/env python

-*- coding: utf -8 -*-

2

import itertools

import tbmodels

def get_model(t1 , t2):

model = tbmodels.Model(

on_site =(1, 1, -1, -1),

pos=[

[0., 0., 0.],

[0., 0., 0.],

[0.5, 0.5, 0.],

[0.5, 0.5, 0.]

],

occ=2

)

for p, R in zip([1, 1j, -1j, -1], itertools.product(

[0, -1], [0, -1], [0]

)):

model.add_hop(

overlap=p * t1 ,

orbital_1=0,

orbital_2=2,

R=R

)

model.add_hop(

overlap=p.conjugate () * t1 ,

orbital_1=1,

orbital_2=3,

R=R

)

for R in ((r[0], r[1], 0) for r in itertools.permutations(

[0, 1]

)):

model.add_hop(t2, 0, 0, R)

model.add_hop(t2, 1, 1, R)

model.add_hop(-t2, 2, 2, R)

model.add_hop(-t2, 3, 3, R)

return model

def run(t1 , t2):

Task a: print the Z2 invariant for the kz=0 plane

Task b: create a plot showing WCC and the largest gap

if __name__ == ’__main__ ’:

Call the run function here

3

Exercise 3. Haldane model

The Haldane model has a honeycomb lattice with two sublattices (see fig. 2) which have on-
site energy +M and −M , respectively. The model contains nearest-neighbour (inter-sublattice)
hoppings with a hopping strength t1 and next-nearest-neighbour hoppings with strength t2.
The hopping terms acquire a phase due to a microscopic magnetic field, whose strength is
parametrized by a variable φ. In this exercise, the Hamiltonian for the Haldane model is given,
and we investigate the Chern number for different values of the parameters M, t1, t2, φ.

Figure 2: A honeycomb lattice with two sublattices. The arrows indicate nearest-neighbour
(red) and next-nearest-neighbour (blue) hoppings.

(a) Implement the get chern function, which should return the Chern number of the Haldane
model for a given set of parameters M, t1, t2, φ. Using this function, evaluate the Chern
number for M = 0.5, t1 = 1, t2 = 1/3, and φ = ±π/2.

Note: The purpose of **settings in the signature of get chern is to allow passing
keyword arguments to the z2pack.surface.run function. To do this, add **settings as
the last argument: z2pack.surface.run(..., **settings). Keyword arguments passed
to get chern will then be forwarded to z2pack.surface.run.

(b) Change M to 1.7 and evaluate the two Chern numbers again. Change min neighbour dist

such that all convergence tests pass.

(c) (optional - for advanced Python users)
Create a plot which shows the phase of the Haldane model as a function of M and φ for
M ∈ [−2, 2], φ ∈ [−π, π], and t1 = 1, t2 = 1/3.
For certain values of the parameters it is much harder (or even impossible) to reach con-
vergence. Can you find an explanation for this behaviour?

Hint: Create a 2D array containing the values for the Chern number for different values
of M and φ, and use matplotlib’s imshow function to plot it.

Listing 3: Skeleton code containing the function for the Hamiltonian in the Haldane model.

#!/usr/bin/env python

-*- coding: utf -8 -*-

4

import numpy as np

defining pauli matrices

identity = np.identity(2, dtype=complex)

pauli_x = np.array ([[0, 1], [1, 0]], dtype=complex)

pauli_y = np.array ([[0, -1j], [1j, 0]], dtype=complex)

pauli_z = np.array ([[1, 0], [0, -1]], dtype=complex)

def Hamilton(k, m, t1 , t2 , phi):

kx , ky , _ = k

k_a = 2 * np.pi / 3. * np.array([

kx + ky ,

-2. * kx + ky ,

kx - 2. * ky

])

k_b = 2 * np.pi * np.array([-kx + ky , -ky , kx])

H = 2 * t2 * np.cos(phi) * sum(np.cos(k_b)) * identity

H += t1 * sum(np.cos(k_a)) * pauli_x

H += t1 * sum(np.sin(k_a)) * pauli_y

H += m * pauli_z

H -= 2 * t2 * np.sin(phi) * sum(np.sin(k_b)) * pauli_z

return H

def get_chern(m, t1 , t2 , phi , ** settings):

This function should return the Chern number for the given

parameters m, t1 , t2 , phi. The ** settings should be passed

on to the z2pack.surface.run method.

if __name__ == "__main__":

Task a)

Task b)

Task c) (optional - for advanced Python users)

5

Exercise 4. Tight-binding model for MoTe2

The file ex4/data/wannier90 hr.dat contains a tight-binding model for MoTe2 that has 56
occupied bands. In this exercise, we study the topological properties of this model.

Note: The result files from this exercise are quite large (∼ 500 MB in total). Make sure to delete
them later if you have limited disk space.

(a) Calculate the Z2 invariant for the ky = 0 plane and plot your result. Make sure that the
result is saved to a file while the calculation is running.

(b) MoTe2 has a very small band gap in the ky = 0 plane. Do you still trust your result? Try
using more than 200 lines in the initial calculation. Adjust the min neighbour dist and
iterator keyword arguments as needed.

Note: To speed up the calculation, you can change the code such that the previous result is
loaded manually and passed to z2pack.surface.run as init result, and disable saving
during the run. Make sure to save the result after the calculation.

(c) Calculate the Z2 invariant for the kz = 0 plane. Try adjusting the min neighbour dist

and iterator keyword arguments. What could be the reason that you cannot reach
convergence?

(d) (optional - for advanced Python users)
Find a point where the direct band gap vanishes, and show that it is a Weyl point.

Hint: You can use the tbmodels.Model.eigenval method to calculate the band gap, and
scipy.optimize.minimize to find the minimum of the gap. Use k = (0.9, 0.05, 0) as a
starting point for the minimization. You might have to try different radii of the sphere
to get a non-zero Chern number because the minimum might not be the exact location of
the Weyl node.

6

http://z2pack.ethz.ch/tbmodels/reference.html#tbmodels.Model.eigenval

